

#### 2次冷却材漏えい時の床ライナの評価について

- 1. 床ライナ温度及び床ライナ減肉量の解析
- 2. 床ライナの機械的健全性について

#### 平成 13 年 10 月 27 日

核燃料サイクル開発機構

#### 1.床ライナ温度及び床ライナ減肉量の解析

#### 1-1 概要

2次主冷却系配管に関して想定し得る最大規模の漏えい(破損口面積が 1/4Dt 相当の漏えい)から、漏えいナトリウムが床ライナ上の局所に堆積して 燃焼する小規模の漏えいまで、ナトリウム漏えい率をパラメータとして床ラ イナに着目した解析を行い、床ライナ温度及び床ライナ減肉量について評価 した。

1-2 評価方法

2次主冷却系に関して、ナトリウム漏えい率をパラメータとして床ライナ 温度に着目した燃焼解析を行い、床ライナ温度を評価するとともに、漏えい ナトリウムが局所的に堆積、燃焼するような小規模漏えい時における床ライ ナ腐食減肉量について評価した。

床ライナ温度の評価はナトリウム燃焼解析コード ASSCOPS による。解析 条件は床ライナ温度を保守的に評価するように設定した。

腐食減肉量の評価は、床ライナ温度が300 以上の場合に腐食速度が最 も厳しい溶融塩型腐食を仮定し、図1-1に示す腐食減肉速度データの99% 信頼幅上限値と床ライナ温度計算値の時間変化から減肉量を算出した。

漏えい発生室として、2次主冷却系Cループの、2次主冷却系配管室 (A446) 蒸発器室(A438) 過熱器室(A439)の3室を対象に評価した。

1-3 評価結果

ナトリウム漏えい率をパラメータとした床ライナ温度及び床ライナ減肉量 についての解析結果(蒸発器室の例)を図1-2a,bに示す。床ライナ温度は漏 えい率が0.3t/h で最高となり、その後3t/h 付近までは低下する。そして漏 えい率がさらに大きくなると再び床ライナ温度は高くなっている。これらの 傾向は他室においても同様であった。

また蒸発器室における漏えい率 0.3t/h の場合の床ライナ温度の時間変化 と、図 1-1 の腐食減肉速度のデータに基づいて評価した腐食減肉量の時間変 化を図 1-3 に示す。

評価対象各室の床ライナ最高温度及び床ライナ最大減肉量を表 1-1 に、大漏えい時(破損口面積が漏えい率 1/4Dt 相当の漏えい)の各部屋における床 ライナの最高温度を表1-2 に示す。表1-1より床ライナの最高温度は約870 、 床ライナ最大減肉量は約2.6mm である。

#### 2次冷却材漏えい時の床ライナ温度及び床ライナ減肉量の解析 (漏えい率をパラメータにした影響評価)





溶融塩型腐食



ナトリウムが漏れだし、燃焼した時に生成する化合物 (過酸化ナトリウムと水酸化ナトリウム)が溶融状態 となり、急速に鉄を溶かす腐食。 この状態では、過酸化ナトリウムNa2O2から生じる過酸 化物イオンが強力な酸化剤となって床ライナ(鉄)を 腐食させ、かつ腐食生成物は直接溶融体環境に溶け出 し、保護膜の形成も期待できないため、急速に腐食が 進行することになる。

図1-1 溶融塩型腐食の減肉速度の温度依存性 (NaOH-Na2O2系環境)



図1-2a 床ライナ温度解析の結果

図1-2b 床ライナ減肉量評価の結果

![](_page_5_Figure_0.jpeg)

図1-3 解析結果の時間変化(蒸発器室の漏えい率0.3t/hの例)

# 表1-1 評価結果(漏えい率パラメータ) 表1-2 評価結果(大漏えい時)

| 漏えい室                | 床ライナ<br>最高温度 | 床ライナ<br>最大減肉量 | 漏えい率   |
|---------------------|--------------|---------------|--------|
| 2次主冷却系配管室<br>(A446) | 約 860°C      | 約2.6mm        | 0.7t/h |
| 蒸発器室<br>(A438)      | 約 870°C      | 約2.6mm        | 0.3t/h |
| 過熱器室<br>(A439)      | 約860°C       | 約2.6mm        | 0.4t/h |

| 漏えい室                | 床ライナ<br>最高温度 |  |
|---------------------|--------------|--|
| 2次主冷却系配管室<br>(A446) | 約 630°C      |  |
| 蒸発器室<br>(A438)      | 約840°C       |  |
| 過熱器室<br>(A439)      | 約810°C       |  |

床ライナの最高温度 約870℃ 床ライナの最大減肉量 約2.6mm 2.床ライナの機械的健全性について

2-1 概要

床ライナは、ナトリウム漏えい時に漏えいナトリウムと建物コンクリート の直接接触を防止する機能が要求されている。このため床ライナの全面が加 熱される大漏えい時において、熱膨張による建物壁との干渉が生じないこと を確認するとともに、ライナが局所的に加熱される小漏えい時において、2 次系床ライナの熱変形と溶融塩型腐食による床ライナの減肉が重畳した場合 の床ライナの機械的健全性(過大な熱変形によって床ライナに貫通性の損傷 が発生しないこと)を、解析及び試験により確認した。

2-2 もんじゅ2次系床ライナの基本構造

もんじゅ2次冷却系機器室に設置される床ライナは、図 2-1 に示すように フローティング方式キャッチパン型を採用し、床ライナの一様熱膨張を拘束 しない構造としており、ライナフレーム上でライナプレートを突き合わせ溶 接して製作されている。またライナプレート裏面には、溶接によるライナプ レートのひずみ発生を防止する対策として、ひずみ防止リブが格子状に取り 付けられている。

2-3 大規模ナトリウム漏えい時の床ライナ健全性評価

大規模のナトリウム漏えい時には、床ライナ全面が熱膨張して建物壁と干 渉するおそれがあるため、あらかじめ建物壁とのギャップを設定している。 ナトリウム燃焼解析に基づいて、大漏えい時の床ライナ温度の評価結果(表 1-2)と、建物壁とのギャップの値から、すべての部屋について床ライナの 一様な熱膨張によって床ライナと建物壁とが干渉しないことを確認した。

- (図2-2参照)
- 2-4 中小規模ナトリウム漏えい時の床ライナ健全性評価
- (1) 床ライナ変形挙動と評価方法

中小規模のナトリウム漏えい時には、漏えいナトリウムが床ライナの一部 に局所的に滞留して燃焼する。この場合、図 2-3 に示すような局所的な熱膨 張により、熱変形を生じる。とくにライナプレートの変形がひずみ防止リブ やライナフレームに拘束される場合は、熱応力が増大する。

床ライナの機械的健全性評価にあたっては、このような床ライナの構造及

び溶融塩型腐食による床ライナの減肉を適切に考慮する必要がある。図 2-4 に床ライナ健全性評価における解析及び試験の流れを示す。

(2)解析

解析は、ナトリウム漏えい燃焼時の床ライナの減肉の進行と、熱入力を重ね合わせた条件において、非弾性解析により床ライナのひずみを評価した。 なお評価条件として、床ライナの最終減肉深さは ASSCOPS コードによる燃焼 解析結果(約2.6mm)を上回る4.5mm とするとともに、熱入力についてもラ イナ最高温度が燃焼解析(約870)を上回る880 となるよう設定している。

減肉進行を伴う弾塑性クリープ解析結果として、境界帯状減肉モデル(漏 えいナトリウムだまりの外縁部だけが帯状に減肉すると想定したモデル)に おける解析結果を図2-5に示す。ただし上段は解析条件としてモデル化した 減肉履歴である。また下段の解析結果では後述するひずみ目安値と比較する ため、3次元で得られたひずみを相当非弾性ひずみに変換して表示した。

図より、床ライナの減肉底のひずみは概ね以下のように推移し、相当非 弾性ひずみの最大値は23%となっていることが判った。

漏えい燃焼開始直後から相当非弾性ひずみは急増し、約 600 秒で最 大値(23%)に達している。

その後減肉の進行に伴い、残留ひずみを有する表面部の消失により相当非弾性ひずみは減少する。

高温保持の終了と相前後して、降温に伴う反転負荷による圧縮ひず みのため、相当非弾性ひずみは再び増加している。

一方、床ライナ材 SM400B の高温材料試験で得られた曲げ破断伸びの下限 値を基本として、機械的健全性判断のための膜 + 曲げひずみの目安値を以 下のように定めた。

膜+曲げひずみ( <sup>+</sup> <sup>b</sup>) <sup>+</sup> <sup>b</sup> 15% 室温 T 350 <sup>+</sup> <sup>b</sup> 30% 350 < T 1000

前述の解析結果とこの目安値とを比較すると、いずれの解析結果も目安 値を下回っている。

(3)部分構造模擬試験

次にひずみが集中するひずみ防止リブ端部及び腐食減肉を模擬した試験 体を用いた部分構造模擬試験を実施した。試験はあらかじめ所定の深さの 模擬減肉を与えた試験体を電気ヒータで加熱し温度一定として、押し込み 荷重を加えひずみを与えた。なお試験体温度は主として880 で実施した。 試験の概念図を図 2-6a に、結果を図 2-6b に示す。

図のように減肉深さ 3mm 及び 4.5mm の試験結果から、ひずみ目安値を大

幅に上回るひずみを与えた場合でも、試験体に貫通性の損傷は発生しない ことが確認できた。

2-5 結論

ナトリウム燃焼解析に基づく大漏えい時の床ライナ温度の評価結果と床ラ イナと建物ギャップの値から、すべての部屋について、床ライナの一様熱膨 張によって床ライナと建物壁が干渉しないことを確認した。

また、床ライナが局所的に加熱される小漏えい時を対象とした非弾性解析に より、床ライナに生じるひずみを推定した結果、最終減肉深さを 4.5mm とし た場合であっても、機械的健全性判断のための目安値を下回っていることを 確認した。一方、部分構造模擬試験により、ひずみ目安値を大幅に上回るひ ずみを与えた場合でも、試験体に貫通性の損傷は発生しないことを確認した。 これらにより、ナトリウム漏えい燃焼時に 2 次系床ライナの熱変形と溶融塩 型腐食による床ライナの減肉量が重畳した場合にあっても、床ライナに貫通 性の損傷が生じることはなく、その機械的健全性は維持されることを確認し た。

![](_page_10_Figure_0.jpeg)

図2-1 もんじゅ2次系ライナ構造概念

![](_page_11_Figure_0.jpeg)

### 図2-2 大漏えい時での確認

![](_page_12_Figure_0.jpeg)

# 図2-3 ライナプレートの変形概念

![](_page_12_Figure_2.jpeg)

図2-4 中小漏えい時での確認

![](_page_13_Figure_0.jpeg)

# 図2-5 境界帯状減肉モデルによる解析結果

![](_page_14_Figure_0.jpeg)

![](_page_14_Figure_1.jpeg)

### 図2-6a 部分構造模擬試験

図2-6b 部分構造模擬試験結果