「もんじゅ安全性調査検討委員会」 第7回委員会	高速増殖炉の安全性 県民の意見を踏えた本日の説明項目
 6. 高速増殖炉の安全性 平成14年4月16日 	 1. 高速増殖炉の安全性 2. 燃料の安全性 3. 炉心崩壊事故評価 4. 安全性の評価(立地評価)
核燃料サイクル開発機構	

 原子炉停止系の信頼性確保(「止める」)				
		原子炉停止系		
		主設備	ヾ゙ックアップ設備	
	軽水炉	制御棒 (PWR,BWR)	ほう酸水の注入設 備	
	高速増殖炉	制御棒 (調整棒)	制御棒 (後備炉停止棒)	
1				

クナトリウム

○ 小 「 」
○ 小 「 」
○ 小 「 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」
○ 小 」<

ディッププレート (波立ち防止板) ナトリウム液面

ガ

ス抜き穴

(例示

 $\langle \Box$

「もんじゅ」の燃料				
表2.1−1 「もんじゅ」燃料の比較				
		もんじゅ	軽水炉(PWR)	
燃料		プルトニウムと劣化ウラン の混合酸化物	濃縮ウランの酸化物	
ペレットの		直径 約5	直径 約 8	
大きさ	mm	高さ 約8	高さ 約10	
集合体 最高燃焼度	MWd/t	約94,000	約48,000	
出力密度	kW/l	約275	約105	
燃料被覆管 材料	_	ステンレス鋼	ジルコニウム合金	
燃料被覆管	°C	約675以下	約350以下	
温度	U	(肉厚中心)	(表面)	
冷却材温度	°C	397~529	289~325	

第2画面

高速増殖炉の燃焼度 燃料集合体平均で約100,000MWd/tが 現在、世界的に標準的な目標					均
	1 144 1 223 16 1 6 1	5, 0001V 積	研究開発を実施		1HC
	燃焼度		「もんじゅ」	「常陽」 (MkーⅡ)	
	燃料集合体 最高		約94,000	約70, 000	
	燃料ピン 最高	MWd/t	約98,000	約75, 000	
	燃料集合体 平均		約80, 000	約60, 000	

燃料破損警報

破損燃料位置同定情報

燃料破損警報 原子炉トリップ信号

-タグガス

Xe-126, Xe-129

燃料ピン

Kr-78, Kr-80, Kr-82

<参考>第4回委員会資料抜粋

炉心安全に関する研究 炉心損傷事故に関する研究の進展

(炉心損傷事故時の即発臨界による機械的エネルギーの評価)

	炉心損傷の過程		起因過程(炉心溶融の開始)	遷移過程(炉心溶融の進展)
		解析コード	SAS3D + VENUS-PM	(SIMMER-II+簡易評価)
	安全審査 当時の解 析	解析条件	過度な保守性まで考慮	予備的な解析により、発生
		解析結果	・BEではエネルギー発生なし ・機械的エネルギーの上限 :約380MJ	エネルギーの上限は起因過 程の結果に包絡されるもの と判断
	安全研究による新た な知見の蓄積、評価 手法の改良 現在の知見に基づく 解析		 ・CABRI試験等で諸現象の 理解解向上(緩和メカニム) ・核データ(ボイド反応度等の精度向上、保守性低減) ・SAS4Aコードの開発 	 SIMMER-IIIコードの開発 国内外の実験データによる 総合的検証 緩和メカニズムの理解向上
			・現在の不確かさ(保守性) の範囲内では即発臨界なし	 BEでは即発臨界(再臨界) なし ・最大限の保守性を考慮しても 機械的エネルギーは110MJ

