第2画面

1

第1画面	第2画面
「もんじゅ」の耐震設計	1 耐震設計審査指針に基づく耐震設計
1 耐震設計審査指針に基づく耐震設計	1.1 「もんじゅ」の耐震設計
2 「もんじゅ」の特徴と軽水炉との比較	1.2 「もんじゅ」の主要な建物の構造
3 原子炉容器の設計	1.3 岩盤立地
4 配管の設計	1.4 「もんじゅ」の耐震重要度分類
5 設計余裕	1.5 基準地震動
6 施設の耐震安全性の確保	1.6 設計に考慮した歴史地震、活断層等
7 まとめ	1.7 地震応答解析

第2画面

「もんじゅ」敷地造成時

岩盤検査

1.4 「もんじゅ」の耐震重要度分類	「もんじゅ」の耐震重要度分類			重要度分類
「もんじゅ」も耐震重要度分類の基準		炉型 クラス	<mark>「もんじゅ」</mark> (FBR)	軽水炉 (PWR)
は軽水炉と同一であり、機能上の分類 も同一である。プラント構成は異なる ものの、その方針に基づきクラス分類 している。		A	原子炉格納容器 制御棒、駆動機構 原子炉容器 ガードベッセルなど	原子炉格納容器 制御棒、駆動機構 余熱除去系 原子炉容器 安全注入系など
ナトリウムを内包する機器を考慮して		В	ナトリウム補助設備 廃棄物処理設備など	廃棄物処理設備など
いる。		С	発電機など	発電機など

1.5 基準地震動

考えられる最大の地震の想定について、S1,S2の2種類を考慮している。

基準地震動S1では、将来起こりうる最強の地震動として、過去の地震及び活動性が高く過去1万年の間に活動した活断層による地震を対象に、それぞれ揺れの周期及び強さを評価し、これらをすべて上回るような地震動を設定する。

基準地震動S2では、およそ現実的でないと考えられる 限界的な地震による地震動として、過去5万年の間に 活動した活断層による最大の想定地震、地震地体構造 から考えられる最大の地震、更には直下地震を対象に、 それぞれ揺れの周期及び強さを評価し、これらをすべ て上回るような地震動を設定する。

	項目	規模 M	震央距離 (km)	最大速度振幅 Vmax(Kine)	備考
		8.0	57.2	13.8	濃尾地震
		7.9	57.2	12.2	濃尾地震
		7.8	54.1	11.5	寛文近江の地震
考	2	7.9	61.1	11.2	天平美濃の地震
慮す		6.9	21.0	10.5	越前岬沖地震
9 ベ	歴史地震	8.1	78.8	10.4	天正畿内の地震
き		6.7	18.2	9.3	正中近江の地震
最		7.3	44.6	7.6	福井地震
強		7.4	49.7	7.6	元暦近江の地震
地震	也 夏 1	7.4	66.0	5.2	文政近江の地震
S1		7.5	82.1	4.4	北丹後地震
	活断層	7.0	25.0	10.0	柳ヶ瀬断層(南)
	統計的期待値	-	-	11.5	300年期待値
		-	-	9.0	200年期待値

	項目	規模 M	震央距離 (km)	最大速度振幅 Vmax(Kine)	備考
		7.0	11.5	18.2	甲楽城断層
考		7.2	16.5	18.0	木ノ芽峠断層
慮		6.9	12.1	15.9	S-21~S-27断層
すべ	活断層	7.2	21.0	14.9	柳ヶ瀬断層
き		7.0	20.2	12.2	S-1+S-6断層
限 界		6.9	24.0	9.2	三方断層
地		6.3	14.0	7.0	野坂断層
震 S2	地震地体構造	7.8	60.0	10.1	
	直下地震	6.5	-	13.4	

2 「もんじゅ」の特徴と軽水炉との比較					
「もんじゅ」(高速増殖炉)の特徴 冷却材に沸点の高いナトリウムを使用					
低圧条件] 高温条件] 薄肉構造を採用					
「もんじゅ」と軽水炉の比較					
		「もんじゅ」	軽水炉(PWR)		
冷却材		ナトリウム	水		
冷却材 原子炉入口		約400	約290		
温度 原子炉出口		約530	約325		
冷却材圧力 (炉心出口圧力)		約0.2MPa (約1.6kgf/cm²)	約15.4MPa (約150kgf/cm²)		
(大気圧:約0.1MPa)					

「もんじゅ」の耐震設計	3 原子炉容器の設計
 1 耐震設計審査指針に基づく耐震設計 2 「もんじゅ」の特徴と軽水炉との比較 3 原子炉容器の設計 4 配管の設計 5 設計余裕 6 施設の耐震安全性の確保 7 まとめ 	 3.1 原子炉容器の全体構造及び支持部 3.2 原子炉容器の支持部 3.3 原子炉容器の支持部の強度

3.2 原子炉容器の支持部	原子炉容器の設計
 原子炉容器の地震に対する支持 ・上部フランジ部で、ペデスタルと基礎ボルトにより固定。 ・下部支持構造物により水平方向のみ支持している。 ・上部にあるしゃへいプラグは、原子炉容器とは別にペデスタルと基礎ボルトで固定しており、しゃへいプラグの荷重は原子炉容器にはかからない。 ・ガードベッセルは中間床に基礎ボルトで固定している。 原子炉容器の仕様 底部に皿形鏡板を有する円筒縦型容器 内径 …約7.1 m 全高 …約17.8 m ナトリウム保有量 …約500ton 材料 …オーステナイト系ステンレス鋼 (SUS304) 	パデスタル (支持台) 約7.1m 中間床 原子炉容器 ガードペッセル 原子炉容器室床

第2画面

原子炉容器 上部フランジ部

基礎ボルトで拘束

水平方向を拘束

- ペデスタル (支持台)

- 中間床

ło-

3.3 原子炉容器の支持部の強度

上部フランジ部、下部支持部の強度評価

部	位	発生応力
上部	S1	設計許容値の約30%
フランジ	地震時	(S2地震時は約60%)
下部	S1	設計許容値の約20%
支持部	地震時	(S2地震時は約45%)
原子炉容	器支持部	の地震に対する強度は十

「もんじゅ」の耐震設計 1 耐震設計審査指針に基づく耐震設計 2 「もんじゅ」の特徴と軽水炉との比較 3 原子炉容器の設計 4 配管の設計 5 設計余裕 6 施設の耐震安全性の確保 7 まとめ

第2画面

1

配管のレイアウト 4.2 配管のレイアウト 1次主循環ポンプ 中間熱交換器 曲がりによる配管引廻し 高温配管であることから、 多くの曲がりにより熱膨張を吸収。 多数の耐震支持装置の設置 地震時に配管系の剛性を高めるために、 原子炉容器 多くの耐震支持装置を適切に配置。 くるまれています 原子炉容器ガードベッセルー

第1画面

第2画面

耐震支持装置

保温材及び 外装板に

