令和5年9月14日 原子力安全対策課 (05-12) <15時記者発表>

高浜発電所2号機の原子炉起動と調整運転の開始について (第27回定期検査)

このことについて、関西電力株式会社から下記のとおり連絡を受けた。

記

高浜発電所 2 号機(加圧水型軽水炉;定格電気出力 82.6 万 kW) は、平成 23 年 11 月 25 日から第 27 回定期検査を実施しているが、令和 5 年 9 月 15 日に原子炉を起動し、翌 16 日に臨界となる予定である。

その後は、諸試験を実施し、9月20日に定期検査の最終段階である調整運転を開始し、10月16日には総合負荷性能検査を実施し、営業運転を再開する予定である。

1 主要工事等

(1) 原子炉照射試験片取出工事

(図-1参照)

中性子照射による原子炉容器の材料特性変化を定期的に把握するため、プラントの運転年数や「実用発電用原子炉施設における高経年化対策実施ガイド」等を考慮し、原子炉容器内部に設置している照射試験片を令和4年に取り出した。(今回で5回目)

(2) 原子炉容器供用期間中検査

(図-2参照)

原子炉容器の供用期間中検査として、原子炉容器溶接部等の超音波探傷検査を行い、健全性を確認した。

(3) 1次系強加工曲げ配管取替工事

(図-3参照)

国内BWRプラントにおいて、芯金を使用して曲げ加工した配管の内面で応力腐食割れが発生した事象を踏まえ、予防保全として、1次冷却材系統につながる曲げ配管のうち、芯金を使用して曲げ加工したものを、芯金を使用せずに曲げ加工した配管に取り替えた。

また、取替え時の作業性を考慮し、対象箇所周辺の配管の一部を取り替えた。

(4) 高サイクル熱疲労割れに係る対策工事

(図-4参照)

国内外PWRプラントにおける高サイクル熱疲労割れ事象(温度ゆらぎによる熱疲労**)を踏まえ、2系統ある充てん配管のうち、使用していない系統の充てん配管(待機系)、隔離弁などを撤去した。

また、安全注入系統の補助注水ライン高温側2箇所、低温側1箇所に弁を追

加した。

※使用していない系統の充てん配管において、隔離弁のシート漏れにより低温水(滞留した水) が高温水側に流入し、高温水と低温水の境界が変動することにより熱疲労が発生する可能性 がある

(5) 中央制御盤他取替工事

(図-5参照)

中央制御盤について、設置されている指示計、操作スイッチ等の機器が製造中止となったことから、今後の保守性を考慮し、最新のデジタル式に取り替えた。

また、中央制御盤に接続されている原子炉保護装置*等についても、電子部品が製造中止になったことから、今後の保守性を考慮し、最新設計のものに取り替えた。

中央制御盤の取替えに合わせて、機器の操作や監視データの信号を伝送する ケーブルを難燃ケーブルに取り替えた。

※1次冷却材系統の圧力・温度信号などからプラントの異常を検出して、原子炉トリップしゃ 断器および工学的安全施設を動作させるための装置

(6)安全系計器用電源装置取替および常用系直流電源装置他設置工事 (図-6参照)

安全系計器用電源装置について、構成部品が製造中止となったことに伴う保守性向上および電気・計装装置のデジタル制御化による消費電力の増加を踏まえて、最新かつ電源容量(電源供給能力)が大きい装置に取り替えた。

また、今後の消費電力の増加を見据えて、新たに常用系直流電源装置を設置するとともに、安全系計器用電源装置のバックアップ電源となる安全系直流電源装置に接続している一部の常用系負荷を常用系直流電源装置に接続するよう移設した。

(7) 火災防護対象ケーブル系統分離対策工事等

(図-7参照)

火災影響範囲外の火災防護対象ケーブルを収納する電線管に関する原子力規制庁の指摘を踏まえ、令和5年3月31日に設計及び工事計画認可の申請を行うとともに、耐火シートの施工等の系統分離対策を実施した。また、火災防護に係る使用前検査における原子力規制庁からの指摘を踏まえ、火災感知器についても適切な位置に移設した。

2 設備の保全対策

2次系配管の点検および取替工事

(図-8参照)

関西電力㈱の定めた「2次系配管肉厚の管理指針」に基づき、2次系配管 773 箇所について超音波検査(肉厚測定)等を実施した。その結果、必要最小厚さ を下回っている箇所および次回定期検査までに必要最小厚さを下回る可能性 があると評価された箇所はなかった。

また、過去の点検結果で減肉が認められており、計画的に取り替えた部位3 箇所、今後の保守性を考慮した部位128箇所、配管取替作業時の作業性を勘案 して取り替えた部位2箇所、合計133箇所を耐食性に優れたステンレス鋼もし くは低合金鋼、または炭素鋼の配管に取り替えた。 3 蒸気発生器伝熱管の渦流探傷検査結果

蒸気発生器 3 台のうち、B-蒸気発生器伝熱管全数(3,382 本)について渦流探傷検査を実施し、異常のないことを確認した。

4 燃料集合体の取替え

燃料集合体全数 157 体のうち 65 体を取り替えた。なお、今回装荷した新燃料集合体は 60 体である。

燃料集合体の外観検査(8体)を実施した結果、異常は認められなかった。

5 総点検等の実施

(図-9参照)

原子炉を冷却する系統の温度、圧力を上げる前に、トラブルの未然防止を目的として、現場パトロール(総点検)を実施した。この総点検は、3回実施し、再稼動経験のある技術系社員、協力会社、メーカ含め、延べ約340名が参加した。

また、原子力分野以外の技術者の視点・知見の活用を目的として、計5分野 (火力関係、水力関係、鉄鋼関係、石油化学関係、電気設備関係)の技術者と 関西電力社員による現場点検を実施した。点検は各分野2回ずつ実施し、延べ 約90名が参加した。

今後、原子炉起動前や発電機並列前後の段階においても、協力会社、メーカ、 再稼動経験のある関西電力OBの体制で、集中的な安全確認を行う予定である。

6 福島第一原子力発電所事故を踏まえた安全性向上対策工事 (表-1参照) 福島第一原子力発電所事故を踏まえ、新規制基準対応工事を含む安全性向上 対策工事を実施した。

新規制基準では、地震・津波等の自然災害や火災等への対応の充実、多重性・ 多様性・独立性を備えた信頼性のある電源・冷却設備の機能強化等が求められ ており、これらに対応するため、主に以下の対策を行った。

① 設計基準への対策

(図-10、11参照)

地震対策として、基準地震動の見直し(550→700 ガル)に伴い、1 次系冷却材系統等の配管や燃料取替用水タンク等の設備について、耐 震補強工事を実施した。

津波対策として、敷地内への浸水を防止するため、防潮堤や潮位計等を設置した。その後警報が発表されない可能性のある津波が発生した場合に備えて、潮位計等を追加設置した。

その他自然現象等への対策として、竜巻による飛来物の衝突を防止するため、安全上重要な屋外設備である海水ポンプエリア等に、鋼板や鋼製の防護ネットの設置等を行った。

火災防護対策として、地震等により既存の消火水系統が使用できない場合を想定し、消火水タンク等を設置した。

溢水対策として、地震等により機器が破損し、タンクや配管等から水が漏えいした場合を想定しても、安全上重要な設備に影響がないよう、溢水の伝播経路に止水対策等を行った。

② 重大事故への対策

○ 電源の確保

(交流電源) (図-12参照)

外部電源が喪失して非常用ディーゼル発電機が起動しない場合の代替電源として空冷式非常用発電装置を設置するとともに、中央制御室から遠隔起動できるよう設備を改造した。

空冷式非常用発電装置からの電源供給等が期待できない場合を 想定して、電源車を配備するとともに、原子炉補助建屋側面に接続 口を設置し、電源車からの電力ケーブルを接続することで直流主分 電盤や計器用電源等への電源供給を可能とした。

また、既存の所内電気設備が使用できない場合を想定して、空冷式非常用発電装置から恒設代替低圧注水ポンプ等の重要機器に直接給電を可能にするため、代替所内電気設備(高圧分岐盤、分電盤、補機切替盤等)を設置した。

(直流電源) (図-13 参照)

全交流電源喪失時においても蓄電池から必要な電源を 24 時間以上供給可能とするため、全交流電源喪失時における原子炉の冷却等に不要な負荷のうち、速やかに切り離す必要がある負荷を遠隔にて切り離すための操作盤を中央制御室に設置した。

さらに、直流電源系統が機能喪失した場合を想定して、加圧器逃がし弁を作動させるための電磁弁に直流電源を供給するための専用の可搬型バッテリを配備した。

○ 冷却機能の確保

(炉心・格納容器の冷却、水源)

(図-14参照)

電源が喪失した場合においても、原子炉および格納容器スプレイの注水を可能とするため、可搬式代替低圧注水ポンプ、恒設代替低圧注水ポンプおよび原子炉下部キャビティ注水ポンプを設置した。 原子炉補機冷却水系統が機能喪失した場合を想定し、ポンプ自身

原子炉補機冷却水糸統が機能喪失した場合を想定し、ボンブ目身の吐出水によりモータ等を冷却(自己冷却)するための配管を設置した。

海水ポンプが機能喪失した場合等の格納容器の除熱機能の代替 手段として、大容量ポンプを配備した。

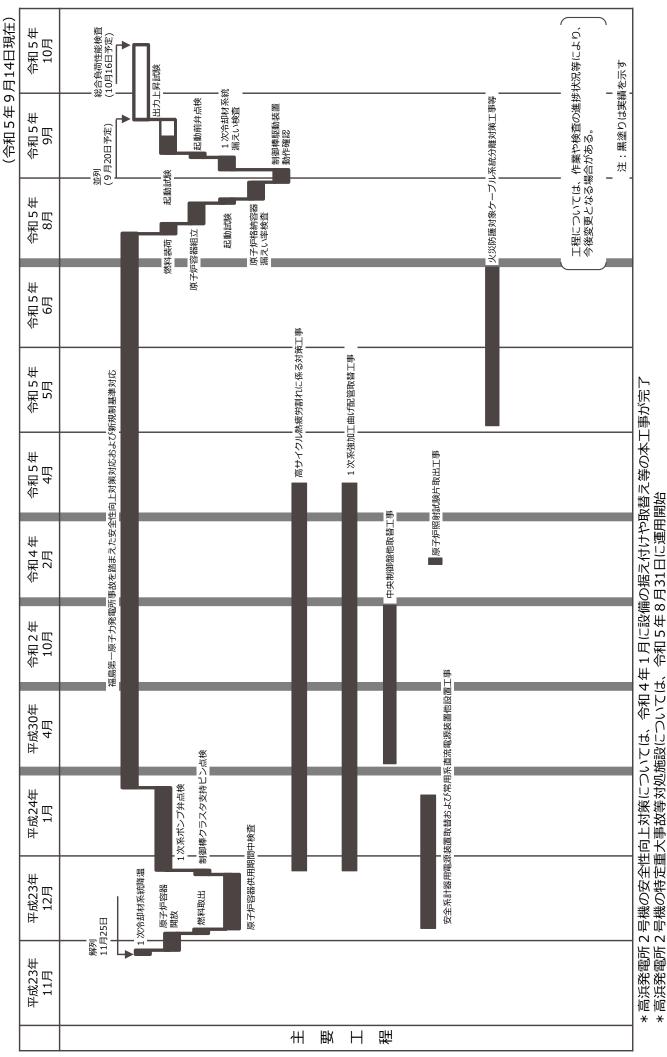
原子炉や格納容器の冷却にかかる給水開始までの時間を削減するため、送水車を配備した。また、重大事故等対処設備の燃料を重油で統一するため、送水車の燃料を軽油から重油に変更した。

原子炉や格納容器を冷却するための水源である燃料取替用水タンクに、純水タンクやほう酸タンクから補給ができない場合を想定して、通常は蒸気発生器を冷却する水源として使用する復水タンクからの補給を可能とするため、移送配管を設置した。

7 次回定期検査の予定 令和 6 年秋頃

> 問い合わせ先 原子力安全対策課(浅原) 内線 2354・直通 0776(20)0314

表-1 主な新規制基準対応設備一覧


① 設計基準への対策(設備、対策工事)

NH = 1 - MM (NM / M/) = 1/			
地震対策	・耐震補強工事		
	・斜面安定化対策工事		
津波対策	・防潮堤		
	・自然現象監視カメラ、潮位計		
その他自然事象等(竜巻対策)	・防護鋼板、防護ネット		
火災防護対策	・消火水タンク、ポンプ、防火帯		
溢水対策	・浸水防止堰 等		

② 重大事故への対策(設備)

	里八爭以	N/N R (政佣)		
電源確保対策		策	• 空冷式非常用発電装置、遠隔起動操作盤	
			• 可搬型代替電源(電源車)	
			・蓄電池の増強、遠隔負荷切離操作盤	
			・加圧器逃がし弁用可搬型バッテリ	
			・代替所内電気設備(高圧分岐盤、分電盤)等	
	冷却設備	炉心・格納容器の	・代替注水設備(恒設/可搬式代替低圧注水ポンプ、	
	対策	冷却	ポンプ用電源車、送水車、原子炉下部キャビティ注	
			水ポンプ)	
			・既設注水設備への自己冷却配管	
			・大容量ポンプ 等	
溶融炉心の冷却		溶融炉心の冷却	・代替注水設備(恒設代替低圧注水ポンプ、原子炉下	
			部キャビティ注水ポンプ)等	
使用済燃料ピット		使用済燃料ピット	・スプレイヘッダ、送水車	
の冷却		の冷却	・放水砲、放水砲用大容量ポンプ	
水源の確保		水源の確保	・復水タンクから燃料取替用水タンクへの冷却水移	
			送配管 等	
		最終ヒートシンク	・大容量ポンプ 等	
		への熱輸送		
水素爆発による格納容器破損 防止対策 放射性物質拡散防止抑制対策		よる格納容器破損	・原子炉格納容器水素燃焼装置	
			· 静的触媒式水素再結合装置 等	
		拡散防止抑制対策	・放水砲、放水砲用大容量ポンプ	
			・シルトフェンス、ゼオライト	
対策の指揮を行う設備		を行う設備	・緊急時対策所	
その他			• 衛星通信設備	
			・可搬式モニタリングポスト	
			・下部キャビティ水位計 等	

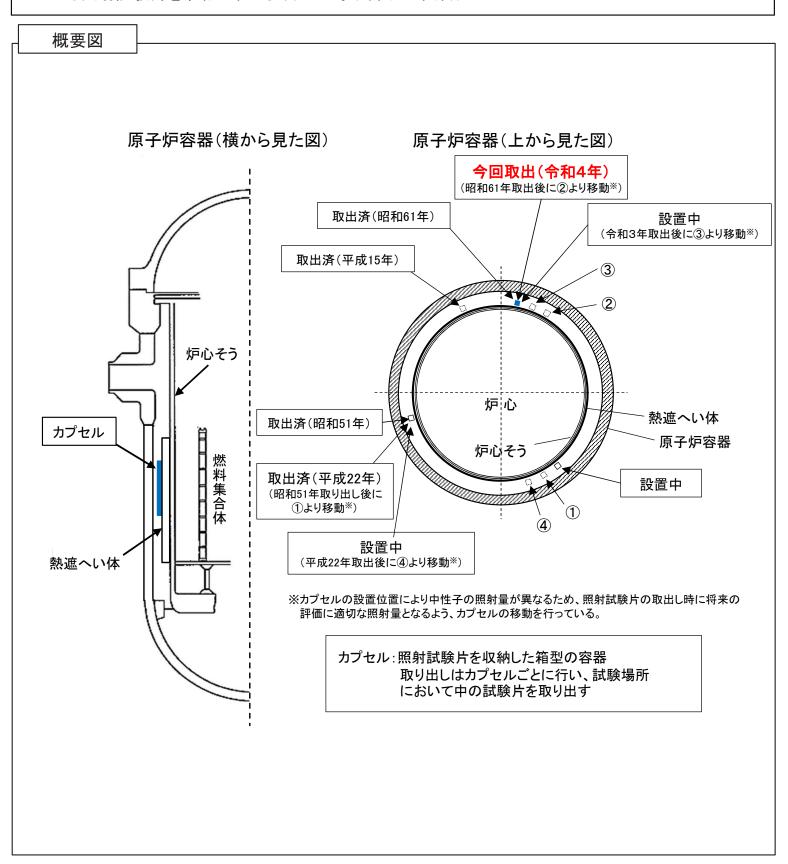

第27回定期検査の作業工程 高浜発電所 2 号機

図-1 原子炉照射試験片取出工事

工事概要

中性子照射による原子炉容器の材料特性変化を定期的に把握するため、プラントの運転年数や「実用発電用原子炉施設における高経年化対策実施ガイド」等を考慮し、原子炉容器内部に設置している照射試験片を令和4年に取り出した。(今回で5回目)

図-2 原子炉容器供用期間中検査

検査概要

原子炉容器の供用期間中検査として、原子炉容器溶接部等の超音波探傷検査(UT)等を行い、 健全性を確認した。

検査箇所

: 超音波探傷検査(UT)実施箇所

①胴の周溶接継手

・上部胴と中間胴との周継手

・・・全周の5%

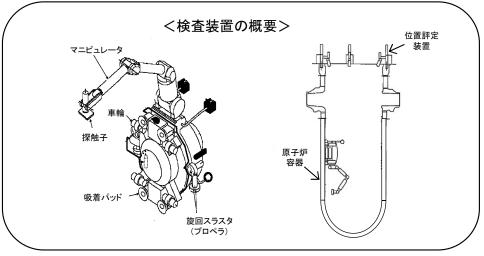
・中間胴と下部胴との周継手

・・・全周(可能範囲)

・下部胴と下部鏡板との周継手・・・・全周の5%

・上部胴と上部胴フランジとの周継手・・・全周(可能範囲)

②胴の長手溶接継手


- ・中間胴の長手継手・・・全長(可能範囲)
- ・下部胴の長手継手・・・全長(可能範囲)
- ③主冷却材管台と胴との溶接継手
 - ・入口管台と胴との溶接継手・・・全周×3箇所(可能範囲)
 - ・出口管台と胴との溶接継手・・・全周×3箇所(可能範囲)
- ④主冷却材管台内面の丸みの部分
 - ·入口管台内面の丸みの部分···全周×3箇所(可能範囲)
 - ・出口管台内面の丸みの部分・・・全周×3箇所(可能範囲)
- ⑤上部胴フランジネジ穴のネジ部・・・14本/58本
- ⑥スタッドボルト

…11本/58本

ワッシャ、ナット

…11本/58本

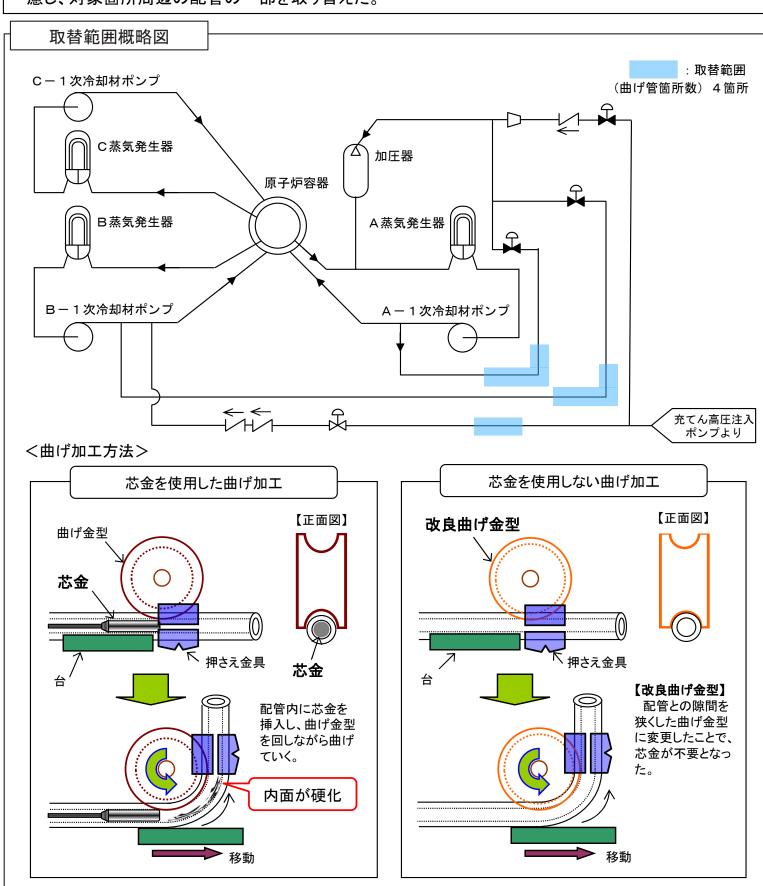


図-3 1次系強加工曲げ配管取替工事

工事概要

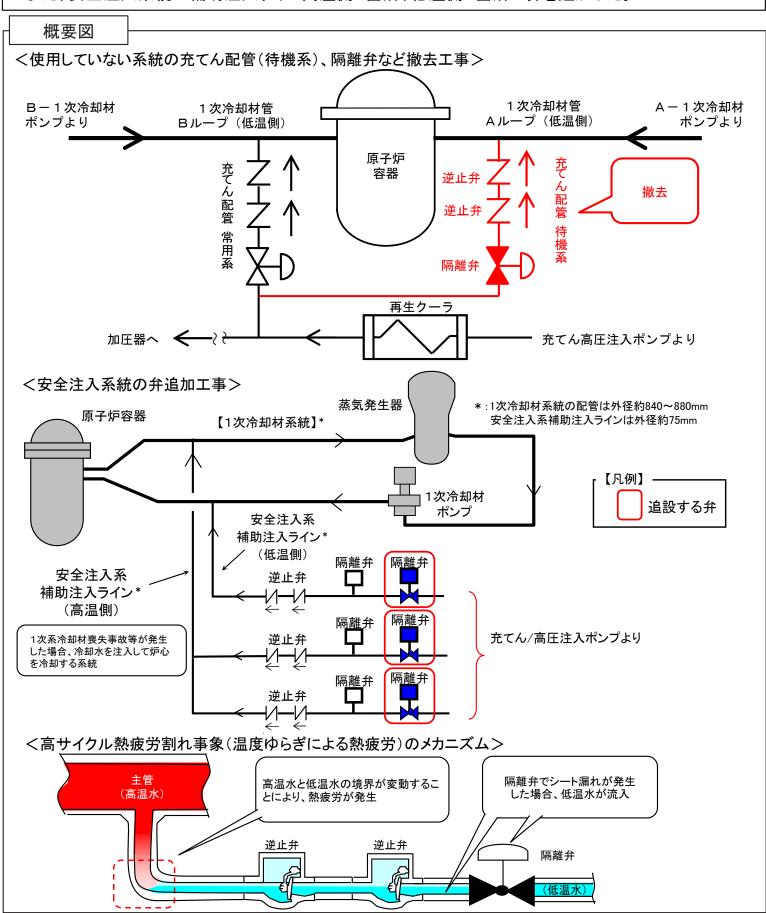
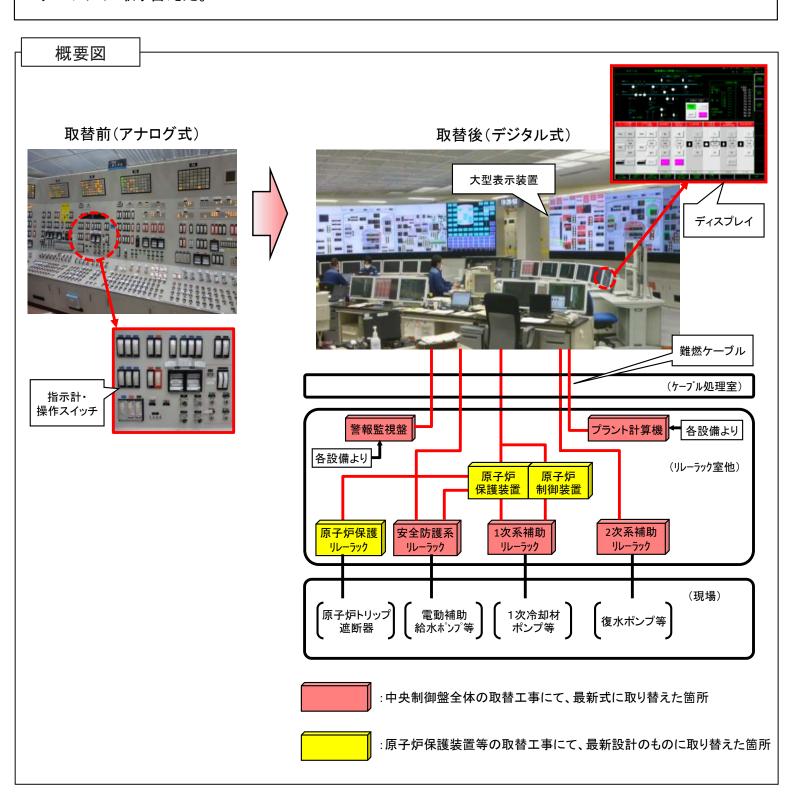

国外BWRプラントにおいて、芯金を使用して曲げ加工した配管の内面で応力腐食割れが発生した事象を踏まえ、予防保全として、1次冷却材系統につながる曲げ配管のうち、芯金を使用して曲げ加工したものを、芯金を使用せずに曲げ加工した配管等に取り替えた。また、取替え時の作業性を考慮し、対象箇所周辺の配管の一部を取り替えた。

図-4 高サイクル熱疲労割れに係る対策工事

工事概要

国内外PWRプラントにおける高サイクル熱疲労割れ事象(温度ゆらぎによる熱疲労)を踏まえ、2系統ある充てん配管のうち、使用していない系統の充てん配管(待機系)、隔離弁などを撤去した。また、安全注入系統の補助注入ライン高温側2箇所、低温側1箇所に弁を追加した。


図-5 中央制御盤他取替工事

工事概要

中央制御盤について、設置されている指示計、操作スイッチ等の機器が製造中止となったことから、 今後の保守性を考慮し、最新のデジタル式に取り替えた。

また、中央制御盤に接続されている原子炉保護装置等についても、電子部品が製造中止になったことから、今後の保守性を考慮し、最新設計のものに取り替えた。

中央制御盤の取替えに合わせて、機器の操作や監視データの信号を伝送するケーブルを難燃ケーブルに取り替えた。

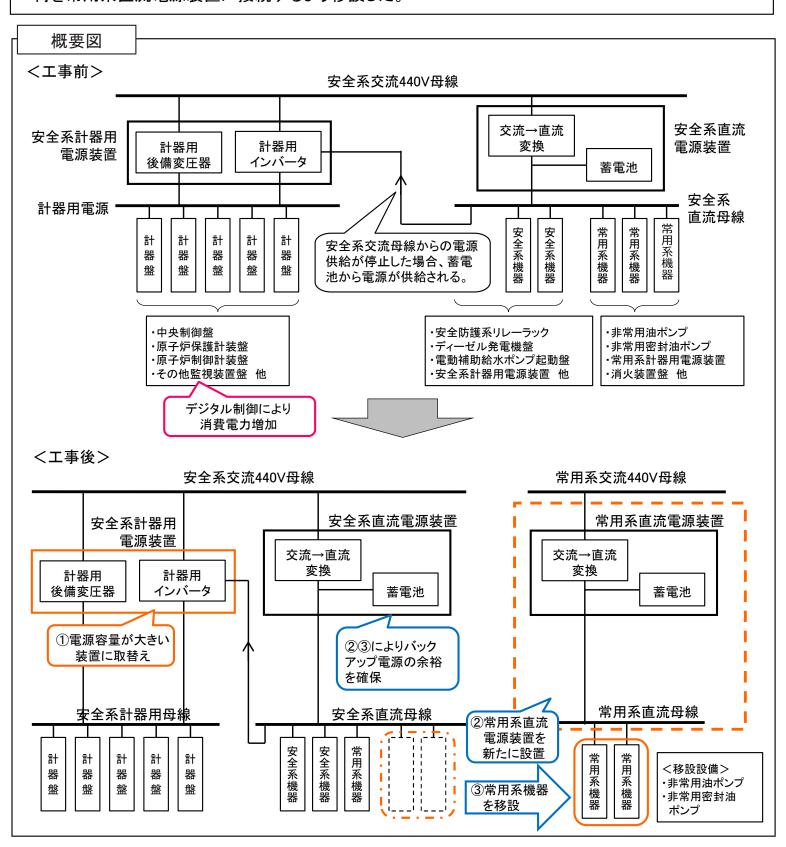


図-6 安全系計器用電源装置取替および常用系直流電源装置他設置工事

工事概要

安全系計器用電源装置について、構成部品が製造中止となったことに伴う保守性向上および電気・計装装置のデジタル制御化による消費電力の増加を踏まえて、最新かつ電源容量(電源供給能力)が大きい装置に取り替えた。

また、今後の消費電力の増加を見据えて、新たに常用系直流電源装置を設置するとともに、安全系計器用電源装置のバックアップ電源となる安全系直流電源装置に接続している一部の常用系負荷を常用系直流電源装置に接続するよう移設した。

図-7 火災防護対象ケーブル系統分離対策工事等

工事概要

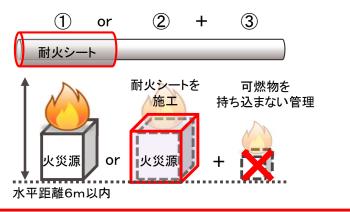
火災影響範囲外の火災防護対象ケーブルを収納する電線管に関する原子力規制庁の指摘を踏まえ、令和5年3月31日に設計及び工事計画認可の申請を行うとともに、耐火シートの施工等の系統分離対策を実施した。また、火災防護に係る使用前検査における原子力規制庁からの指摘を踏まえ、火災感知器についても適切な位置に移設した。

概要図

<火災防護対象ケーブル系統分離対策>

:火災影響範囲

火災源による火炎高さ等により影響を与える範囲

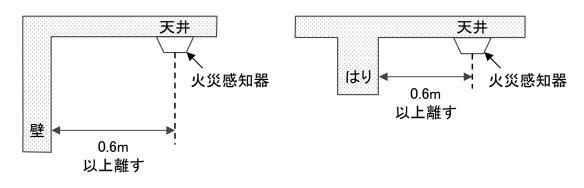

:火災影響範囲外

耐火シート施工+持ち込み可燃物管理により対策を実施

<火災影響範囲外の対策内容>

火災影響範囲外の電線管側から水平距離6m以内に火災源がある場合

- 電線管側に耐火シートを施工する
- ②: 火災源側に耐火シートを施工する加えて、同範囲内に
- ③: 可燃物を持ち込まない管理を実施



<火災感知器の移設>

火災感知器について、消防法における煙感知器設置基準に基づき適切な位置に移設した。

[消防法における煙感知器設置基準(例)]

壁またははりから0.6m以上離隔

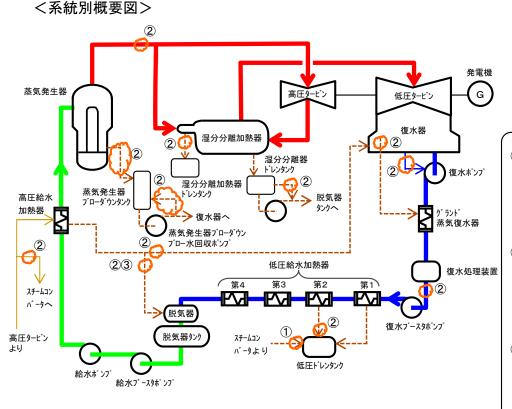
図-8 2次系配管の点検および取替工事

点検概要

今定期検査において、合計773箇所について超音波検査(肉厚測定)を実施した。

<超音波検査(肉厚測定):773箇所、内面目視点検なし>

○ 2次系配管肉厚の管理指針に基づく超音波検査(肉厚測定)部位


	「2次系配管肉厚の管理指針」 の点検対象部位	今回点検実施部位
主要点検部位	1,564	319
その他部位	880	454
合計	2,444	773

(結果)

必要最小厚さを下回っている箇所、および次回定期検査までに必要最小厚さを下回る可能性があると評価された 箇所はなかった。

概要図

過去の点検結果で減肉が認められており、計画的に取り替えた部位3箇所、今後の保守性を考慮して取り替えた 部位128箇所、配管取り替え作業時の作業性を勘案して取り替えた部位2箇所、合計133箇所を耐食性に優れたス テンレス鋼もしくは低合金鋼または炭素鋼の配管に取り替えた。

 【凡例】
 : 主蒸気系統

 : 給水系統
 : 復水系統

 : 抽気系統
 : ドレン系統

 : 主な配管取替箇所

【取替理由】

- ①過去の点検結果で減肉が認められており、計画 的に取り替えた箇所
 - (3箇所)
 - ・必要最小厚さとなるまでの期間が10年未満の 箇所

炭素鋼 ⇒ ステンレス鋼

② 配管の保守性*を考慮して取り替えた箇所

(128箇所) 炭素鋼 ⇒ ステンレス鋼

92箇所 9箇所

炭素鋼 ⇒ 低合金鋼 炭素鋼 ⇒ 炭素鋼 ステンレス鋼 ⇒ ステンレス鋼

9箇所 26箇所 1箇所

3箇所

③配管取替作業時の作業性を勘案して取り替え た箇所

(2箇所)

炭素鋼 ⇒ 炭素鋼

2箇所 [合計 133箇所]

* 狭隘部で肉厚測定がしづらい小口径配管などについて取り替えた。

図-9 総点検等

実施概要

原子炉を冷却する系統の温度、圧力を上げる前に、トラブルの未然防止を目的として、現場パトロール(総点検)を実施した。この総点検は、3回実施し、再稼動経験のある技術系社員、協力会社、メーカ含め、延べ約340名が参加した。

また、原子力分野以外の技術者の視点・知見の活用を目的として、計5分野(火力関係、水力関係、 鉄鋼関係、石油化学関係、電気設備関係)の技術者と当社社員による現場点検を実施した。点検は各 分野2回ずつ実施し、延べ約90名が参加した。

実施内容

<総点検>

		1回目 (原子炉冷却系統の昇圧時)	2回目 (復水器真空上昇時)	3回目 (1次冷却材系統の昇温・昇圧前)			
	実施日	令和5年8月18日、19日	令和5年8月22日	令和5年8月30日			
	参加人数	115名 (当社社員: 26名 当社OB: 4名 メーカ: 9名 協力会社: 76名	119名 (当社社員: 42名 当社OB : 5名 メーカ : 11名 協力会社: 61名	110名 (当社社員: 60名) 当社OB: 9名 メーカ: 9名 協力会社: 32名			
	実施範囲	1次系	2次系	1·2次系			
	点検の観点	原子炉冷却系統昇圧時における漏えい有無、1次冷却材ポンプ起動時の振動他	復水器真空上昇のタイミング で給水・復水系統の漏えいの 有無他	原子炉冷却系統漏えい検査 前 および主蒸気管水張前の 安全対策工事の範囲を含め た状態確認他			
_	原子炉起動までに 処置を要する不具合等	O件	O件	O件			
点検結果	検 設備上の気がかり事項 		O件	O件			
	運転に直接影響のない 気がかり事項 (養生テープ残存等)	95件	52件	72件			

【運営統括長による意識付け】

【点検状況】

<原子力分野以外の技術者による点検の例>

[火力関係]

実施日:令和5年8月31日、9月1日

参加人数:延べ21名(火力部門の当社社員6名、原子力部門の当社社員15名)

点検結果:火力関係の技術者は、原子力発電所よりも高温、高圧系統の設備を取り扱っているため、主に

蒸気系統、給水系統、配管サポートの点検を実施し、異常がないことを確認。

「鉄鋼関係]

実施日:令和5年9月5日、6日

参加人数:延べ16名(鉄鋼産業の技術者4名、原子力部門の当社社員12名)

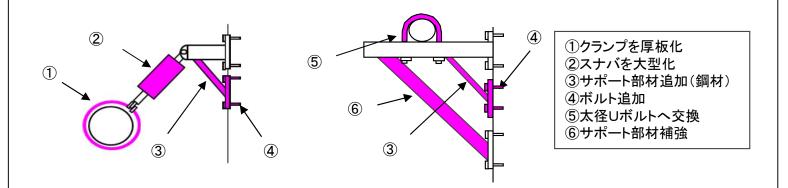
点検結果:非破壊診断技術を用いた回転機器の設備管理に精通しているため、主にポンプ等の運転状態

(異音、振動)について点検を実施し、異常がないことを確認。

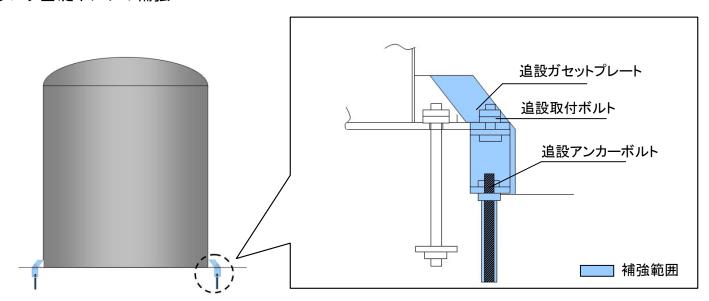
図-10 設計基準への対策(地震対策) (1/2)

工事概要

基準地震動の見直し(550→700ガル)に伴い、耐震補強工事を実施した。


- 例)①配管サポート補強、②タンク基礎ボルトの補強、③周辺斜面安定化対策工事、
 - ④燃料取替用水タンク他取替工事、使用済燃料ピットクレーン補強工事、
 - 外部遮へい壁耐震補強工事、原子炉格納容器貫通部配管カバー(伸縮継手)取替工事

[下線の対策を下記工事概要図に示す]


工事概要図

安全上重要な設備およびそれらへの波及的影響を及ぼす恐れがある設備の耐震補強工事を実施した。

①配管サポート補強

②タンク基礎ボルトの補強

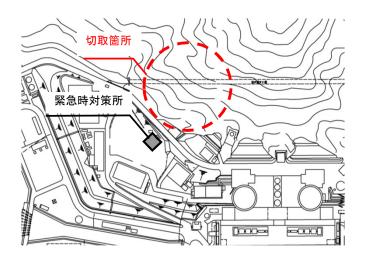
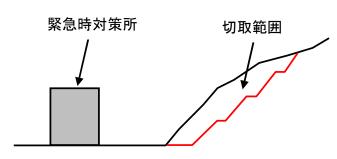
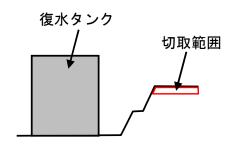

その他、支持脚の補強、胴板の補強、架台の補強を実施した。

図-10 設計基準への対策(地震対策) (2/2)

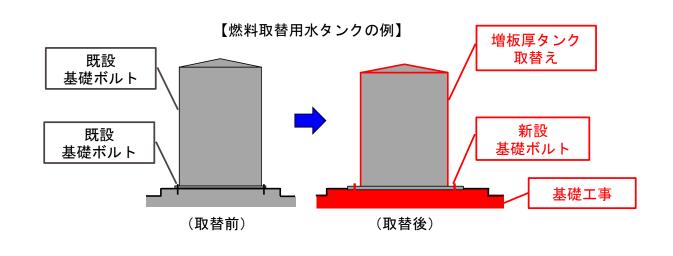

工事概要図

③周辺斜面安定化対策工事

緊急時対策所および2号復水タンク、トレンチ周辺の土砂を除去し、斜面の安定化を実施した。



斜面表層部の風化層を取り除いた



斜面表層部の土砂部を取り除いた

④燃料取替用水タンク他取替工事

燃料取替用タンク等の耐震裕度を向上させるため、増板厚タンクへ取り替えた。

図-11 設計基準への対策

(津波対策、その他自然現象等への対策、火災防護対策、溢水対策)

工事概要

【津波対策】

敷地内への浸水を防止するため、防潮堤等を設置した。

例)①放水口側防潮堤、②取水路防潮ゲート、③潮位計

【その他自然現象等への対策】

竜巻による飛来物の衝突を防止するため、安全上重要な屋外設備である海水ポンプエリア等に、 鋼板や鋼製の防護ネットの設置等を行った。

例) 4) 防護鋼板設置、5) 防護ネット設置

【火災防護対策】

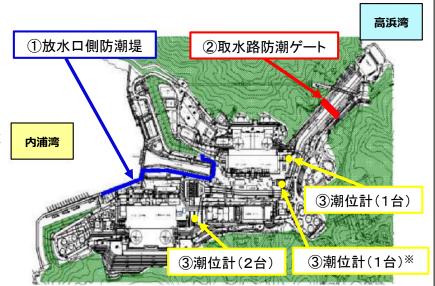
地震等により既存の消火水系統が使用できない場合を想定し、消火水タンク等を設置した。 例)消火水タンク、ポンプ設置、(外部火災)防火帯設置

【溢水対策】

地震等により機器が破損し、タンクや配管等から水が漏えいした場合を想定しても、安全上重要な 設備に影響がないよう、溢水の伝播経路に止水対策等を行った。

例)浸水防止堰設置

[下線の対策を下記工事概要図に示す]

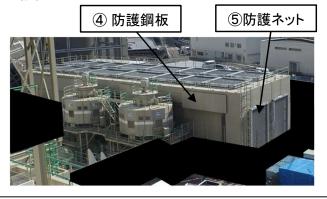

工事概要図

【津波対策(例)】

<放水口側防潮堤、取水路防潮ゲート、潮位計>

- ①放水口にT.P.+8.0mの放水口側防潮堤を設置
- ②取水路にT.P.+8.5mの取水路防潮ゲートを設置
- ③潮位計を設置

T.P.:東京湾平均海面



※警報が発表されない可能性のある津波が発生した場合に備えて追加設置

【その他自然現象等への対策・竜巻対策(例)】

<海水ポンプ竜巻飛来物防護設備>

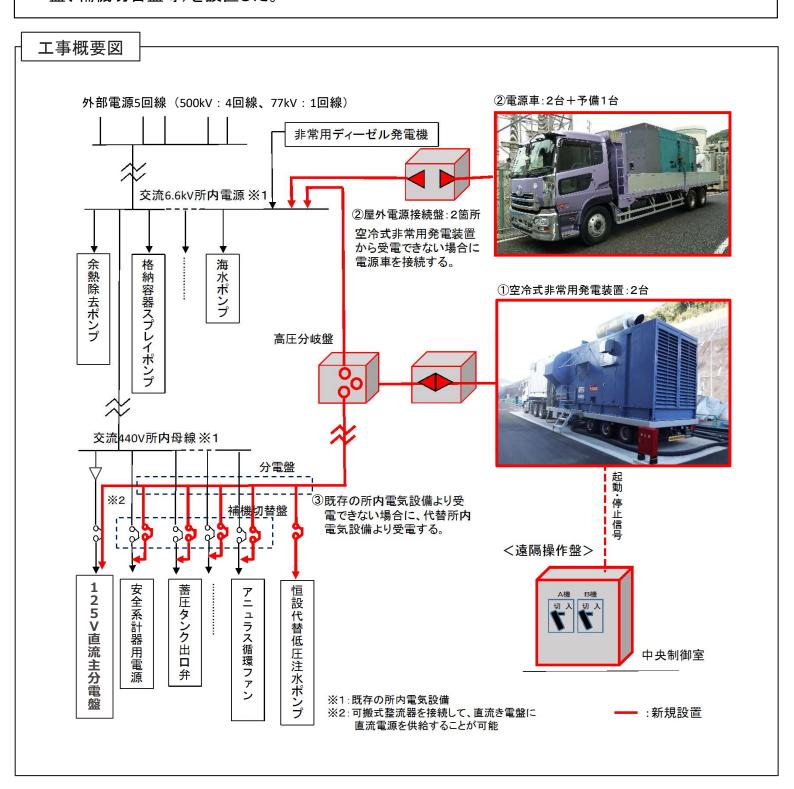

4防護鋼板設置、5防護ネット設置

図-12 重大事故への対策(電源の確保:交流電源)

工事概要

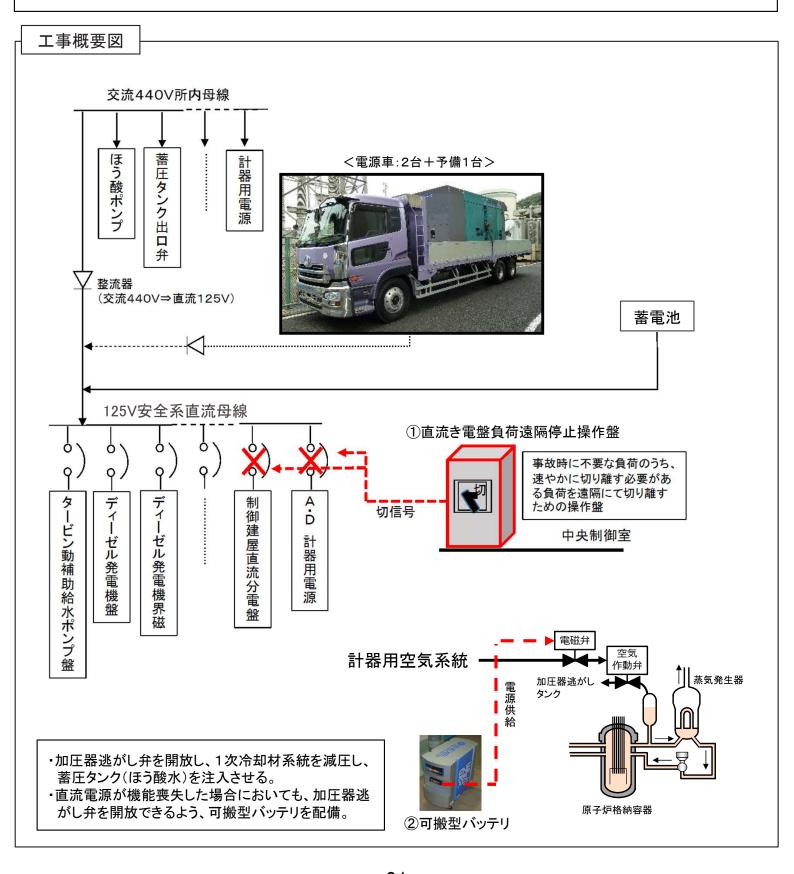

- ①外部電源が喪失して非常用ディーゼル発電機が起動しない場合の代替電源として空冷式非常用 発電装置を設置するとともに、中央制御室から遠隔起動できるよう設備を改造した。
- ②空冷式非常用発電装置からの電源供給等が期待できない場合を想定して、電源車を配備するとともに、原子炉補助建屋側面に接続口を設置し、電源車からの電力ケーブルを接続することで、直流主分電盤や計器用電源等への電源供給を可能とした。
- ③既存の所内電気設備が使用できない場合を想定して、空冷式非常用発電装置から恒設代替低圧 注水ポンプ等の重要機器に直接給電を可能にするため、代替所内電気設備(高圧分岐盤、分電盤、補機切替盤等)を設置した。

図-13 重大事故への対策(電源の確保:直流電源)

工事概要

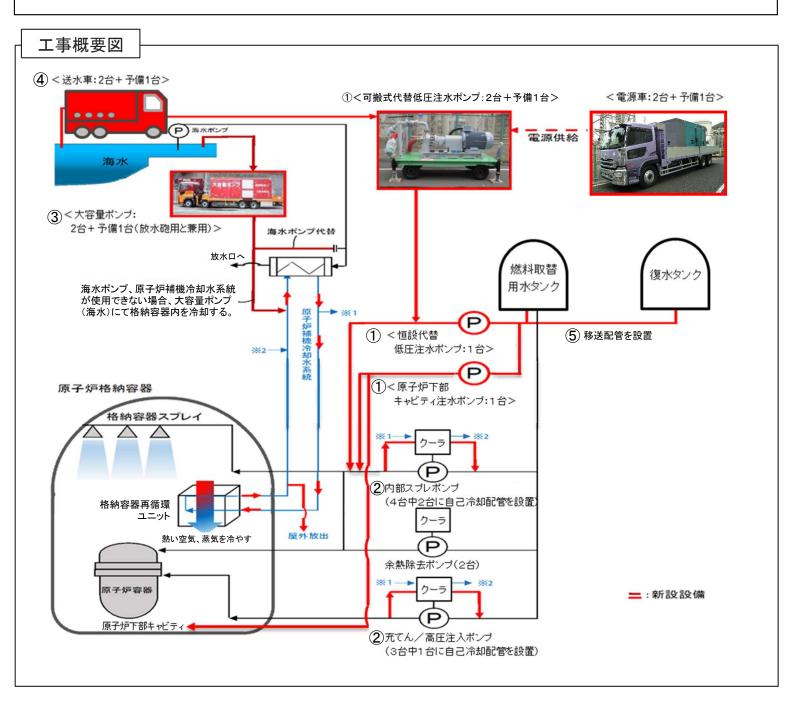

- ①全交流電源喪失時においても蓄電池から必要な電源を24時間以上供給可能とするため、全交流電源喪失時における原子炉の冷却等に不要な負荷のうち、速やかに切り離す必要がある負荷を遠隔にて切り離すための操作盤を中央制御室に設置した。
- ②直流電源系統が機能喪失した場合を想定して、加圧器逃がし弁を作動させるための電磁弁に直流電源を供給するため、専用の可搬型バッテリを配備した。

図-14 重大事故への対応 (冷却機能の確保:炉心・格納容器の冷却、水源)

工事概要

- ①電源が喪失した場合においても、原子炉および格納容器スプレイの注水を可能とするため、可搬式代替低圧注水ポンプ、恒設代替低圧注水ポンプおよび原子炉下部キャビティ注水ポンプを設置した。
- ②原子炉補機冷却水系統が機能喪失した場合においても、ポンプ自身の吐出水によりモータ等を 冷却(自己冷却)するための、配管を設置した。
- ③海水ポンプが機能喪失した場合等の格納容器の除熱機能の代替手段として、大容量ポンプを 配備した。
- ④原子炉や格納容器の冷却にかかる給水開始までの時間を削減するため、送水車を配備した。また、 重大事故等対処設備の燃料を重油で統一するため、送水車の燃料を軽油から重油に変更した。
- ⑤原子炉や格納容器を冷却するための水源である燃料取替用水タンクに、純水タンクやほう酸タンクから補給ができない場合を想定して、通常は蒸気発生器を冷却する水源として使用する復水タンクからの補給を可能とするため、移送配管を設置した。

