

資料No.1-3

高速増殖原型炉もんじゅ 新耐震指針に照らした耐震安全性評価

安全上重要な機器・配管系の耐震安全性評価

平成22年2月13日 独立行政法人日本原子力研究開発機構 敦賀本部

I. 耐震安全性評価対象設備と評価手法

E

次

- Ⅱ.構造強度評価
- Ⅲ. 動的機能維持評価
- Ⅳ. 基準地震動の違いによる比較
- Ⅴ. 参考

I. 耐震安全性評価対象設備と評価手法

ある設備(耐震クラスS以外)

(3)評価対象は機器が約100機種、配管が約240ライン

No.	ל	テゴリー	対象設備	評価方法	
1			原子炉構造 (容器、炉内構造物)	スペクトルモーダル解析	
2			原子炉格納容器	時刻歴応答解析、FEM弾塑性座屈解析	
3			1次主冷却系中間熱交換器	応答倍率法	
4		「止める」「冷やす」	1 次主冷却系循環ポンプ	応答倍率法	
5		「閉じ込める」に直接 係わる機能を有する 機器・配管	2次主冷却系循環ポンプ	応答倍率法	
6	構造強度評価		1次主冷却系主配管	スペクトルモーダル解析	
7			2次主冷却系主配管	スペクトルモーダル解析 部分モデルによる静的応力解析	
8			補助冷却設備空気冷却器	スペクトルモーダル解析	
9			補助冷却設備主配管	スペクトルモーダル解析 部分モデルによる静的応力解析	
10		真神には有な機器	蒸気発生器(蒸発器)	スペクトルモーダル解析	
11		同还かに行行な版品	炉外燃料貯蔵槽(EVST)	時刻歴応答解析	
12		制御棒	制御棒挿入性	時刻歴応答解析	
13	動的機能維持評価	ナトリウムポンプ	1 次主冷却系循環ポンプ	応答倍率法	
14		ナトリウム弁	蒸気発生器入口止め弁	 スペクトルモーダル解析	

- :本日の御説明対象

■原子炉建物・原子炉補助建物等の地震応答解析で得られた各床位置の加速度応答時刻歴波を用いて水平2方向(EW方向、NS方向)及び鉛直方向について床応答スペクトルを算定(図は原子炉容器据付位置の床応答スペクトルを例として示す)

内部コンクリート構造物水平方向床応答スペクトル IC05 EL36.55m(原子炉容器据付位置)、減衰定数1%

内部コンクリート構造物鉛直方向床応答スペクトル IC05 EL36.55m(原子炉容器据付位置)、減衰定数1%

0.1

周期(s)

- UD

原子炉容器 0.078s

■床応答スペクトルの拡幅 固有周期の誤差等を考慮し、 床応答スペクトルを周期軸 方向に±10%拡幅

周期

■ 包絡スペクトルの使用 複数の床にまたがって設置され る機器・配管は、各設置床の拡 幅したスペクトルを重ね合わせ た包絡スペクトルを使用

■原則として「原子力発電所耐震設計技術指針JEAG4601-1991追補版」に規定された値とし、 試験等で妥当性が確認された値も用いる

		減衰定数				
対象設備	原設計	耐震安全	全性評価	代表的機器・配管の使用例		
	水平方向	水平方向	鉛直方向			
溶接構造物	1.0	1.0	1.0	原子炉格納容器、原子炉容器、炉内構造物、1次主冷 却系中間熱交換器、補助冷却設備空気冷却器、蒸気 発生器		
ポンプ及びファン 等の機械装置	1.0	1.0	1.0	1次主冷却系循環ポンプ、2次主冷却系循環ポンプ		
燃料集合体	3.0	3.0		燃料集合体		
制御棒駆動機構	1.0	1.0	1.0	微調整棒駆動機構、粗調整棒駆動機構、後備炉停止 棒駆動機構		
配管系	0.5~2.5	0.5 ~ 3.0 (4.0)*1	0.5 ~ 3.0 (4.0)*1	1次主冷却系配管(2.0~3.0%)、2次主冷却系配管(3.0%) 補助冷却設備配管(2.0~3.0%) 制御用圧縮空気設備配管(0.5%)		

*1 1次ナトリウムオーバフロー系配管の1ライン(配管No.PSOF-007)のみ実測等に基づく 減衰定数を使用

		減衰定数(%)									
	耐震安全性 評価	NRC *1	ASME *2	ASCE *3	HEDL文献 *4						
機器 溶接構造物	1.0	4.0	4.0	2.0	-						
配管	0.5~3.0	4.0	5.0	5.0	3inch以下 9% 3inch以上 注1) 6%						

注1) 文献における配管径の範囲は3inch~8inch

- *1 U.S.NUCLEAR REGULATORY COMMISSION REGULATORY GUIDE 1.61(2007)
- *2 ASME 2004 SECTION II, DIVISION 1-APPENDICES
- *3 ASCE/SEI 43-05 Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities
- *4 HANFORD ENGINEERING DEVELOPMENT LABORATORY M.J.ANDERSON et al. "DAMPING IN LMFBR PIPE SYSTEM", 5th Annual PVP Conference June, 1984–San Antonio, Texas

 耐震安全性評価で用いている設計用減衰定数は海外規格等に比べて 保守的である
 高速増殖炉のナトリウム機器、配管は肉厚が相対的に薄く、予熱用に全て 保温材に覆われていることから、実際の減衰定数は使用しているものよりも

大きく、保守的と考えられる

もんじゅ機器・配管系の耐震設計基準

◆ ナトリウム冷却型高速増殖炉発電所の原子炉施設の耐震設計基準

 高温(金属材料がクリープ温度領域)の使用部位は、「ナトリウム冷却型高速増殖炉発電 所の原子炉施設に関する構造等の技術基準(高速原型炉第1種機器の高温構造設計指 針)」を適用

・低温の使用部位は原子力発電所耐震設計技術指針JEAG4601と同一

機哭	旧由	容	器	配管			
יזוד איזי	//////////////////////////////////////	一次一般膜応力	ー次膜+ 一次曲げ応力	一次一般膜応力	ー次膜+ 一次曲げ応力		
クラス1機器	高温 ⁽¹⁾	Min【2.4Sm、2/3Su】 ⁽³⁾	左記のKs倍 ⁽⁴⁾	2Sm	左記のKs倍 ^⑷		
(旧第1種機器)	低温⑵	Min【2.4Sm、2/3Su】	左記の1.5倍	2Sm	左記の1.5倍		
クラス2・3機器	高温⑴	Min【2.4S*、0.6Su】 ⁽³⁾	左記のKs倍 ⁽⁴⁾	2S*	左記のKs倍 ^⑷		
(10 年3・4 性 (成 क)	低温(2)	0.6 Su	左記の1.5倍	0.6 Su	左記の1.5倍		

機器・配管系の耐震安全性評価基準値

- ⑴ クリープ温度領域 例 オーステナイト系ステンレス鋼425℃以上
- (2) 非クリープ温度領域
- ⁽³⁾ Sm:設計応力強さ、Su:設計引張強さ、S*:高温における許容引張応力(低温は旧告示501号と同一)
 もんじゆ主要材料SUS304 500℃の場合、2.4Sm=235MPa 2/3Su=247MPa

2.4S* =240MPa 0.6Su=223MPa

⁽⁴⁾ Ks:断面形状係数→全断面降伏荷重/初期断面降伏荷重(薄肉配管の場合1.27)

Ⅱ.構造強度評価

Ⅱ-1. 原子炉容器及び炉内構造物

@=_____ Ⅱ-1. ① 原子炉容器及び炉内構造物の解析モデル

● □ - 1. ② 原子炉容器下部におけるモデル化の考え方

● II-1. ③評価部位

原子炉容器及び炉内構造物の耐震安全性評価部位

- 〇原子炉冷却材バウンダリ機能の維持
 - (閉じ込める)
 - a.構造上大きな地震荷重が発生する部位
 - ・上部フランジ
 - ·炉内構造物取付台
 - ・下部サポート
 - ・出入口ノズル
 - b. 座屈の評価
 - ・中間胴

○崩壊熱の除去(冷やす)
 炉心構成要素を支持すると共に、
 冷却材流路形成、炉内流量配分
 を行う部位

- ·炉心槽
- ·炉心支持板
- ·炉内構造支持構造物

(水平1次:0.082s)

建物地震応答解析による床応答スペクトルに基づいて、詳細解析(スペクトルモーダル解析法)を実施し、 機器に発生する応力を求める。

					評価基準值IV _A S				
評価対象 設備	評価対象 設備			材質	評価 温度 (℃)	評価 基準値 (MPa)	判定	評価 手法	
		咁	応答スペクトル波	183			257	0	スペクトル
	^ス ロノブリ	医	断層モデル波	182	5115204	397	237	0	モーダル解析
	χuγχμ	膜+曲げ	応答スペクトル波	183			385	0	スペクトル
			断層モデル波	182				0	モーダル解析
		膜	応答スペクトル波	103	SUS304	529	231	0	スペクトル
百了后家哭			断層モデル波	91				0	モーダル解析
原于炉谷奋			応答スペクトル波	103				0	スペクトル
		腹十曲り	断層モデル波	91			348	0	モーダル解析
		咁	応答スペクトル波	129			004	0	スペクトル
	オーバフロー	展	断層モデル波	128	SUS304	510	234	0	モーダル解析
	汲上ノズル	·····································	応答スペクトル波	129			051	0	スペクトル
		脵十田げ	断層モデル波	128			301	0	モーダル解析

発生値は全て評価基準値を下回り、構造強度は確保される

建物地震応答解析による床応答スペクトルに基づいて、詳細解析(スペクトルモーダル解析法)を実施し、 機器に発生する応力を求める。

			発生値 (MPa)		評価	基準值I	√ _A S		
評価対象 設備	評価部位	応力 分類			材質	評価 温度 (°C)	評価 基準値 (MPa)	判定	評価 手法
	山間間	~ 日	応答スペクトル波	44	5115304	520	70		スペクトル
	中间刷		断層モデル波	41	303304	525	12		モーダル解析
		咁	応答スペクトル波	40			201	0	スペクトル
	上部フランジ	li天	断層モデル波	34	SUS304	111	201	0	モーダル解析
		膜+曲げ	応答スペクトル波	92			436	0	スペクトル
			断層モデル波	77			430	0	モーダル解析
百乙后应空		膜	応答スペクトル波	136	0110004	007	240	0	スペクトル
原于炉谷岙	炉内構造物		断層モデル波	135				0	モーダル解析
	取付台	·王·王·长	応答スペクトル波	160	505304	397	061	0	スペクトル
		腹て曲り	断層モデル波	158			301	0	モーダル解析
		咁	応答スペクトル波	101			240	0	スペクトル
			断層モデル波	97	0110004	4 396	240	0	モーダル解析
	ト即サハート	時・手に	応答スペクトル波	309	505304		261	0	スペクトル
		膜+曲げ	断層モデル波	300			301	0	モーダル解析

発生値は全て評価基準値を下回り、構造強度は確保される

建物地震応答解析による床応答スペクトルに基づいて、詳細解析(スペクトルモーダル解析法)を実施し、 機器に発生する応力を求める。

					評価	基準値I	√ _A S		
評価対象 設備	評価部位	応力 分類	発生値 (MPa)		材質	評価 温度 (°C)	評価 基準値 (MPa)	判定	評価 手法
	后心墙	咁	応答スペクトル波	108	SUS304	474	220	0	スペクトル
		族	断層モデル波	102			239	0	モーダル解析
后古港选物	 炉内構造	まに広も	応答スペクトル波	151	5115204	200	170	0	スペクトル
別的相迫物	支持構造物	文庄心刀 	断層モデル波	145	505304	390	170	0	モーダル解析
	据付ボルト	膜	応答スペクトル波	69	SUS304	412	253	0	スペクトル
			断層モデル波	56				0	モーダル解析
	原子炉容器 据付ボルト	717E	応答スペクトル波	244	SNR24-2	00	400	0	スペクトル
		対応	断層モデル波	243	3ND24-3	90	490	0	モーダル解析
			応答スペクトル波	17			106	0	スペクトル
原子炉容器	 下部支持構	せん町	断層モデル波	17		100	190	0	モーダル解析
支持構造物	造物	まに	応答スペクトル波	73	SEVQIA	180	200	0	スペクトル
		囲け	断層モデル波	72			392	0	モーダル解析
	下部支持構		応答スペクトル波	122	00400	05	185	0	スペクトル
	^{垣初} 基礎ボルト	515反	断層モデル波	121	55400	65		0	モーダル解析

発生値は全て評価基準値を下回り、構造強度は確保される

Ⅱ-2.1次主冷却系主配管

●●● II-2. ① 評価モデルと解析手法

【解析手法】

■解析コード SAP(はり要素)

■解析手法

スペクトルモーダル解析

■流体及び保温材等の取扱いは等分布 付加質量として考慮

■入力地震動
 各フロアにまたがる配管設置位置の床応
 答スペクトルの包絡スペクトルを入力
 ■機器ノズル

機器ノズルの剛性をバネでモデル化

20

●●●● II - 2. ② 応答スペクトル

繩 II − 2. ③ 応力評価式

構造基準による応力評価(一次応力)

<応力評価式>

「ナトリウム冷却型高速増殖炉発電所の原子炉施設に関する構造等の 技術基準」高速原型炉第1種機器の高温構造設計指針を適用

裕度(評価基準値/発生値)が最も小さい配管の評価結果(ホットレグ)

		応力分類 発生値(MPa)		Ē	平価基準値 IV _A			
評価部位	応力分類			材質	評価温度 (°C)	評価基準値 (MPa)	判定	評価方法
— I [%] 0.0 —		応答スペクトル波	114	SUS304	500	045	0	スペクトル
エルホ20E	一次応力	断層モデル波	75				0	
エルボ2E	(膜+曲げ応力)	応答スペクトル波	93		SUS304 529	529	245	0
		断層モデル波	79				0	

高速原型炉第1種管 評価基準値(IVAS) = 2KsSm

Ks:断面形状係数 全断面降伏荷重/初期断面降伏荷重(薄肉配管の場合1.27)

Sm:設計応力強さ

Ⅱ-3.2次主冷却系主配管

④ ■ -3.① 2次主冷却系主配管の構造強度評価部位

2次主循環ポンプB 2次主冷却系主配管の耐震Sクラス範囲で裕度が最も小さ M 2108MV1 い部位(コールドレグのティー部) 蒸発器B 過熱器B Ш 中間熱交換器B (5173-303) 中間熱交換器B 2次主循環ポンプB 蒸発器B 最大応力発生 ティー部(127T) レジューサ 主管 0.00457.2(1,9) 分岐管 ティー部詳細

発生応力が最大となるティー部 ・原子炉補助建物(A/B)内の蒸気発生器(蒸発器)~2次主冷却系循環ポンプ間に 設置されている

④●● Ⅱ-3. ④ 原子炉格納容器内配管の影響について

ティー部(127T)の発生応力に影響する3次、5次モードでは内部コンクリート近傍配管の振動は発生しない

固有値解析及び地震応答解析結果から以下を確認 ■2次主循環ポンプを境界に内部コンクリート側と原子炉補助建物側はほぼ独立の振動 系とみなせる ■ティー部(127T)の評価では蒸発器~2次主循環ポンプの配管モデルにおいて内部コン クリート側の影響は十分小さい

@==> Ⅱ – 3. ⑥ 3次元部分シェルモデル解析の内容

◎●● II-3. ⑦ 3次元部分シェルモデル解析モデル

@=________ Ⅲ-3. ⑧ 2次主冷却系主配管の構造強度評価結果

					評価基準値Ⅳ _A S			
評価部位	応力分類	発生値(MPa)		評価方法	評価基準値 (MPa)	評価温度 (°C)	材質	
ティー	一次応力	応答スペクトル波	213	3次元部分シェル モデル解析	000	450	0110004	
127T	(膜+曲げ応力)	(199) (はりモデルによる あ層モデル波 199 (なりモデルによる スペクトルモーダル解析		はりモデルによる スペクトルモーダル解析	260	458	505304	

高速原型炉第3種管 評価基準値(ⅣAS) = 2KsS*

Ks:断面形状係数 全断面降伏荷重/初期断面降伏荷重(薄肉配管の場合1.27)

S*:高温における引張応力

3次元部分モデルシェル解析(内圧項と軸力項を加えた結果)

	内圧	モーメント (3次元部分シェルモデル解析)	軸力	合計
応答スペクトル波	4MPa	203MPa	6MPa	213MPa

④ ■ -3. ④ 評価基準値についての補足

<u>2次主冷却系主配管のティー部の評価</u>

部分シェルモデルによる評価 🗌

容器での評価とみなすことができる

容器の評価基準値(第3種容器) Ks×min【2.4S*,0.6Su】

Ks:断面形状係数 1.5(中実矩形断面) S*:許容引張応力 102.6MPa(at458°C) Su:設計引張強さ 386.1MPa(at458°C)

管の評価基準値(第3種管) 2KsS*

Ks:断面形状係数 1.27(薄肉配管) S*:許容引張応力 102.6MPa(at458℃)

評価基準値は、容器>管であり、2次主冷却系主配管の 当該ティー部については容器の評価基準値を適用した場合、裕度は向上する

I - 4. 1次主冷却系中間熱交換器 1次主冷却系循環ポンプ 2次主冷却系循環ポンプ

応答倍率法による評価

- 耐震の構造強度評価は線形解析による
 (応力は地震荷重に比例)
- ・原設計の応力、荷重に原設計の加速度と基準地 震動Ssの加速度の比(応答比)を乗じて基準地震 動Ssによる応力、荷重を算定

応答倍率法による評価は、発生値が評価基準値を 超えないことを効率的に判断することを目的とした 評価手法

評価対象		成五	発生値		Ē	砰価基準値Ⅳ。	S	≣₩/₩ / ₩/₩	
設備	評価部位	分類	先生삩 (MPa)		評価基準値 (MPa)	評価温度 (°C)	材質	評価方法	
	2次出口	咁	応答スペクトル波	126	000	E01	010004	応答倍率法	
	ノズル	限	断層モデル波	105	223	521	505304	評価1	
1次主冷却系	仁 執答	咁	応答スペクトル波	176	0.01	500	010004	応答倍率法	
中間熱交換器			断層モデル波	147	231	529	505304	評価1	
	基礎		応答スペクトル波	115	0.01	FF	0014425	応答倍率法	
	ボルト	せん断	断層モデル波	96	301	55	SCM435	評価1	
	መን፡አ 🗖	咁	応答スペクトル波	173	057	207	010004	応答倍率法	
			断層モデル波	117	257	397	505304	評価1	
	オーバフロー	咁	応答スペクトル波	49	057	207	010004	応答倍率法	
1次主冷却系 ノズル		断層モデル波	33	257	397	505304	評価1		
循環ポンプ	基礎		応答スペクトル波	47	0.41	100	0014425	応答倍率法	
	ボルト	ドルト せん断	断層モデル波	32	341	100	SCM435	評価1	
	ポニーモータ	317E	応答スペクトル波	195		100	001405	応答倍率法	
	駆動装置 取付ボルト	51 張	断層モデル波	132	444	100	SCM435	評価1	
	吸込口及び	曲	応答スペクトル波	164	0.01	450	616204	応答倍率法	
		[断層モデル波	154	231	408	505304	評価1	
	オーバフロー	曲	応答スペクトル波	57	0.01	450	5115204	応答倍率法	
2次主冷却系	ノズル	」 K K	断層モデル波	53	231	400	303304	評価1	
循環ポンプ	アプ ポンプ取付		応答スペクトル波	14	241	100	SOM425	応答倍率法	
	ボルト		断層モデル波	13	341	100	3CIM435	評価1	
	ポニーモータ		応答スペクトル波	32		100	0.014/05	応答倍率法	
	駆動装置 取付ボルト		断層モデル波	30	444	100	SCM435	評価1	

Ⅱ-5. 原子炉格納容器

建物(原子炉格納容器)の地震応答解析による床応答スペクトルに基づいて、応答倍率法により機器に 発生する応力を求める。

評価	応力	発生値	発生値			V _A S		評価	
部位	分類	(MPa)		材質	評価温度 (℃)	評価基準値 (MPa)	判定	方法	
	西	応答スペクトル波	11			000	0	応答	
リング		断層モデル波	12	601/400	150	232	0	倍率法	
取付部	ᄨᆞᆎᅸ	応答スペクトル波	261	567480	150	240		応答	
		断層モデル波	288			348	0	倍率法	
	四世	応答スペクトル波	59			000	0	応答	
強め輪		断層モデル波	68	COV/400	150	232	0	倍率法	
取1寸部 (最下部)		応答スペクトル波	59	5GV480	150	240	0	応答	
		断層モデル波	68			348	0	倍率法	

発生値は全て評価基準値を下回り、構造強度は確保される

● ■ -5. ④ 構造強度評価結果2

頂部変位-荷重関係(EW方向)

最大荷重時の変形・Mises応力コンター図(EW方向、外表面)

評価 位置	荷重 方向	自重 (MN)	発生荷』 (M	Ē(Ss−D) N)	座屈荷 (MI	重(FEM) N)	発生荷重(Ss-D) 座屈荷重(FEM)	評価 基準値	判定	評価 方法
	NS	10.0	水平	76.3	水平	173.8	0.44	1		FEM
円筒胴	NO	40.9	鉛直	8.45	鉛直	19.24	0.44	I	0	解析
下部	 \A/	40.0	水平	80.9	水平	163.5	0.50	4		FEM
	EVV	40.9	鉛直	8.45	鉛直	17.08	0.50	I	0	解析

Ⅱ-6. 補助冷却設備

● II - 6. ① もんじゅの冷却系統概要図

耐震性から考えられる構造上の特徴

- ・送風機、空気冷却器本体、入口ダクト、出口ダクト、
 熱膨張等の変位吸収用の伸縮継手、ダンパから
 構成
- ・出入ロダクトは、地震時健全性確保のために 耐震架構を設置し、支持
- ・空気冷却器本体は、上下の支持架構で支持

空気冷却器の評価部位

〇崩壊熱除去機能の維持

- a. 構造上大きな地震荷重が発生する部位
 - ・出口ダクト(上部) 裕度(評価基準値/発生値)が最も小さい評価部位
 - ・出ロダクト(上部)取付ボルト
 - ・入口ダクト
 - ・送風機ケーシング基礎ボルト
 - ・電動機取付ボルト

なお、出口ダクト(上部)と空気冷却器本体とは 伸縮継手を介して分離されるため個別に評価する

解析モデル:多質点系はり要素モデル 解析手法:スペクトルモーダル解析 解析コード:ABAQUS

解析モデルの考え方

・はり剛性

入ロダクト、空気冷却器本体、出ロダク ト等をモデル化し算定

·質量

はり剛性を考慮する鋼材以外に、出入 ロダンパ、伝熱管、ヒータの質量を考慮 ・支持

空気冷却器本体、出入ロダクトの支持 は、ばね要素でモデル化

·入力地震動

支持部(🦾)に入力

解析モデル(水平方向)

多質点系はりモデル

=∓ /≖					評価	ī基準值Ⅰ	V _A S		
評価 対象 設備	評価部位	応力分類	発生値		材質	価度 い ℃	評価 基準値	評価方法	
	出口	座屈	応答 スペクトル波	5.25×10⁵ (kN∙mm)	6116204	525	7.61×10 ⁵ (kN∙mm)	スペクトル	
	タクト (上部)	(曲けモーメント換算)	断層モデル波	5.31×10 ⁵ (kN⋅mm)	303304	525	7.71×10 ⁵ (kN∙mm)	モーダル解析	
補助	入口	座屈	応答 スペクトル波	1.58×10⁵ (kN⋅mm)	8118204	200	1.33×10 ⁶ (kN∙mm)	スペクトル	
冷却	ダクト	(曲けモーメ ント換算)	断層モデル波	1.75×10 ⁵ (kN⋅mm)	303304	300	1.35×10 ⁶ (kN∙mm)	モーダル解析	
設 備	出口 ダクト	己建成书	応答 スペクトル波	61 (MPa)	00122	100	175	スペクトル	
空 気	(上部) 取付ボルト	りしていしノ」	断層モデル波	52 (MPa)	33400	100	(MPa)	モーダル解析	
冷却	送風機	己建成书	応答 スペクトル波	62 (MPa)	00122	65	185	スペクトル	
岙	サーシンサ 基礎ボルト	りしていしノ」	断層モデル波	57 (MPa)	33400	00	(MPa)	モーダル解析	
	電動機		応答 スペクトル波	21 (MPa)	00122	65	142	スペクトル	
	電動機 取付ボルト	飞ん断心力	断層モデル波	22 (MPa)	33400	00	(MPa)	モーダル解析	

発生値は全て評価基準値を下回り、構造強度は確保される

				評価基準値Ⅳ _A S			
評価部位	応力分類	発生値(MPa)		評価方法	評価基準値 (MPa)	評価温度 (℃)	材質
ティー	一次応力	応答スペクトル波	214	3次元部分シェル モデル解析	075	205	6116204
423T	(膜+曲げ応力)	断層モデル波	243	はりモデルによる スペクトルモーダル解析	275	300	303304

高速原型炉第3種管 評価基準値(IVAS) =2KsS*

Ks:断面形状係数 全断面降伏荷重/初期断面降伏荷重(薄肉配管の場合1.27)

S*:高温における引張応力

3次元部分モデルシェル解析(内圧項と軸力項を加えた結果)

	内圧	モーメント (3次元部分シェルモデル解析)	軸力	合計
応答スペクトル波	5MPa	203MPa	6MPa	214MPa

Ⅱ-7. 蒸気発生器(蒸発器)

蒸気発生器の解析モデル 解析モデル(水平方向) ステーボルト伝熱管固定H型鋼 \oplus 支持ス 32 K x1 33 22 0 23 🛉 35 24 -内部 36 10 部 構 胴 37 11 板 11 ステーボルト 耐震サポ 胴板局部変形 38 12 39 13 25 Kx3 15 Kx4 $K x_2$ 17 並進ばね 耐震サポート ビン結合 (周方向6ヶ所) 多質点系はりモデル

′解析モデルの考え方

・はり剛性

上部胴板、下部胴板、スカート、内部構 造物(内筒のみ)を円筒として剛性を考慮

・質量

はり剛性を考慮する鋼材以外に、伝熱管、 保温材・ヒータ、付属部品の質量を考慮

・流体の取扱い

流体は付加質量として考慮

·支持、結合部

伝熱管固定H型鋼、ステーボルト、耐震 サポートは、モーメントを伝達しないため ばね要素でモデル化

ばね要素には、内筒と胴板の局部変形 を考慮

·物性値

定格運転温度の値を使用

- ・入力地震動
- スカートと耐震サポート(
- ・解析コード

NASTRAN

建物地震応答解析による床応答スペクトルに基づいて、詳細解析(スペクトルモーダル解析法)を実施し、 機器に発生する応力を求める。

=⊤./≖					評価	基準値Ⅳ	۹S		
評価 対象 設備	評価部位	応力分類	発生値 (MPa)		材質	評価 温度 (°C)	評価 基準値 (MPa)	判定	評価方法
		喵	応答スペクトル波	152			005	0	スペクトル
	ナトリウム	上。 一 に に に に に に に に に に に に に	断層モデル波	149	5115204	400	220	0	モーダル解析
	入口ノズル	暗上曲ヂ	応答スペクトル波	152	303304	409	227	0	スペクトル
		腹て曲り	断層モデル波	149			337	0	モーダル解析
2 次		咁	応答スペクトル波	135			250	0	スペクトル
大主	ナトリウム	—————————————————————————————————————	断層モデル波	143		205	230	0	モーダル解析
冷	出口ノズル	暗上曲ヂ	応答スペクトル波	135	SEVAEZZO	320	207	0	スペクトル
系		族十四リ	断層モデル波	143			307	0	モーダル解析
蒸		咁	応答スペクトル波	155			250	0	スペクトル
光器		医	断層モデル波	148		057	209	0	モーダル解析
	7+1	暗上曲ヂ	応答スペクトル波	296	SEVAEZZO	207	200	0	スペクトル
	777-F	展て曲り	断層モデル波	282			300	0	モーダル解析
	支圧		応答スペクトル波	121	0.014/4	264	101	0	スペクトル
		(*1)	断層モデル波	108	301114	204	431	0	モーダル解析

*1 容器内壁に直接押しつけられる振れ止め金物の断面積より支圧応力を算定

発生値は全て評価基準値を下回り、構造強度は確保される

建物地震応答解析による床応答スペクトルに基づいて、詳細解析(スペクトルモーダル解析法)を実施し、 機器に発生する応力を求める。

= ⊤ / –			発生値 (MPa)		評価	基準値Ⅳ	۹S		
評価 対象 設備	評価部位	応力分類			材質	評価 温度 (°C)	評価 基準値 (MPa)	判定	評価方法
2	下如旧七	広 🗔	応答スペクトル波	33	SOM//A	064	161		スペクトル
_ 次 主	下市加州权	座凪	断層モデル波	29	50MV4	204	101	0	モーダル解析
冷		咁	応答スペクトル波	86			050		スペクトル
系	蒸気出口	[]	断層モデル波	84		266	258	0	モーダル解析
蒸登		· 古 · 击 · 上	応答スペクトル波	86	SEVAEZZB	300	200		スペクトル
器		腹十曲り	断層モデル波	84			380	0	モーダル解析
2 		细入共	応答スペクトル波	51			004		スペクトル
次 注 措	7 + 1	祖旨で	断層モデル波	44	COM/4	65~	294		モーダル解析
冷 構 造		広 戸(…の)	応答スペクトル波	0.18	SCMV4	220	4	0	スペクトル
^却 物 系			断層モデル波	0.15			I		モーダル解析
蒸	甘7林-ビルⅠ	217E	応答スペクトル波	365		00	400		スペクトル
 器	奉碇小ルト	515夜	断層モデル波	359		80	408		モーダル解析

*2 座屈の値は軸圧縮荷重と曲げモーメントのそれぞれについて発生値と許容値の比率で求めた値を足し合わせた値

発生値は全て評価基準値を下回り、構造強度は確保される

Ⅱ-8. 炉外燃料貯蔵槽

58

炉外燃料貯蔵槽の構造強度評価部位

(水平1次:約0.09s)

			発生値 (MPa)		評佰	価基準値Ⅳ	∕ _A S	
評価対象 設備	評価 部位	応力 分類			材質	評価 温度 (℃)	評価 基準値 (MPa)	評価 方法
	胴フラン	昭	応答スペクトル波	40	5115204	200	004	古梦位玄法
	ジつけ根		断層モデル波	29	303304	300	234	心合伯卒法
		昭	応答スペクトル波	20			004	
	胴振止	展	断層モデル波	15	SUS304	200	234	 応答倍率法
	モニ 50	膜+	応答スペクトル波	228		300	251	心合伯平法
│ │ 燃料貯蔵		曲げ	断層モデル波	167				
容器	乍 ト ナ	組合せ	応答スペクトル波	139	5115204	200	170	時刻歴応答
	京上十一	(*1)	断層モデル波	95	303304	300	172	解析
		JUJE	応答スペクトル波	78			405	亡体体表法
	ボルト ─- t	515反	断層モデル波	57			495	心合 倍平法
			応答スペクトル波	85	5NB21-2	300	001	亡体位或计
		「せん断	断層モデル波	62			। <u>उ</u> ष्ठ।	心合倍平法

*1:曲げ応力とせん断応力の組合せ

◎●●● Ⅱ-8. ④ 炉外燃料貯蔵槽の構造強度評価結果2

60

			発生値 (MPa)		評価	価基準値Ⅳ	Γ _A S	
評価対象 設備	評価 部位	応力 分類			材質	評価 温度 (℃)	評価 基準値 (MPa)	評価 方法
		昭	応答スペクトル波	10			004	
	胴振止ボ	展	断層モデル波	7	SM400A	200	224	古梦应玄计
	スつけ根	膜+	応答スペクトル波	118	5101400A	300	225	心合信平法
		曲げ	断層モデル波	86			330	
	振止ポス	組合せ	応答スペクトル波	85	SE440A	300	208	古这位家注
	派正小へ	(*1)	断層モデル波	62	3F440A	300	200	心合伯平広
정 중 면		組合せ	応答スペクトル波	105			170	応答倍率法
21谷岙	7-1	(*2)	断層モデル波	77	SM400A			
	77 <u>-</u> 2	座屈	応答スペクトル波	0.43	3101400A	300	1	
		(*3)	断層モデル波	0.32			I	
		217E	応答スペクトル波	108			183(*4)	
	- 1 2 u L		断層モデル波	72	66400	6E	185	時刻歴応答
	ボルト		応答スペクトル波	48	55400	65		解析
		でん断	断層モデル波	32			142	

*1:曲げ応力とせん断応力の組合せ

*2: 圧縮応力、曲げ応力とせん断応力の組合せ

*3:座屈の値は軸圧縮荷重と曲げモーメントのそれぞれについて発生値と許容値の比率で求めた値を足し合わせた値

4:fts=1.4fto-1.6 r bを採用(fto:許容引張応力(F/2×1.5)、rb:せん断応力) F*=min【1.2Sy, 0.7Su】 Sy:設計降伏点、Su:設計引張強さ

			発生値 (MPa)		評佰	価基準値Ⅳ	Γ _A S	
評価対象 設備	評価 部位	応力 分類			材質	評価 温度 (℃)	評価 基準値 (MPa)	評価 方法
		組合せ	応答スペクトル波	135			242	
	支持口答	(*1)	断層モデル波	103	554404	150	242	古梦在家注
	又行口同	座屈	応答スペクトル波	0.45	3F440A	150	1	心合伯牛太
		(*2)	断層モデル波	0.34			I	
		組合せ	応答スペクトル波	68			170	
	ᄪᅈᆍᆉᆂᆎ	(*1)	断層モデル波	40	SUS304	200	172	時刻歴応答
回転ラック	际区 当 力 半田	座屈	応答スペクトル波	0.37		300	-1	解析
		(*2)	断層モデル波	0.21			I	
	支持円筒		応答スペクトル波	182		150	074	亡你位去让
	取付 ボルト	51張	断層モデル波	139	SNB7	150	371	心合 倍 率法
	下部振止	JUJE	応答スペクトル波	87	0110004	000	100	時刻歴応答
	取付 ボルト	51 張	断層モデル波	53	505304	300	128	解析
しゃへい	案内装置		応答スペクトル波	23	0110204	150	050	亡体位或计
プラグ	案内筒	脵	断層モデル波	21	505304	150	253	│ 応答倍率法

*1: 圧縮、曲げ応力とせん断応力の組合せ

*2: 座屈の値は軸圧縮荷重と曲げモーメントのそれぞれについて発生値と許容値の比率で求めた値を足し合わせた値

発生値は全て評価基準値を下回り、構造強度は確保される

Ⅲ. 動的機能維持評価

- 1. 制御棒挿入性
- 2.1次主冷却系循環ポンプ (ナトリウムポンプ)
- 3. 蒸発器入口止め弁 (ナトリウム弁)

◎●●● □ - 1. ① 制御棒の概要と評価基準

制御棒挿入性の静的及び動的スクラム試験結果

Ⅲ−1. ③ 評価結果

相対変位36 mm(18+18) ≤ 55 mm(許容相対変位) 変位及び挿入時間に対する挿入性は確保されている

●●● Ⅲ-2. ① 動的機能維持評価(ポンプ, 弁)の流れ

●●● = -2. ② 1次主冷却系循環ポンプの動的機能維持評価 67

●●●● Ⅲ-2. ③ 1次主冷却系循環ポンプの動的機能維持確認試験概要

■試験体

・約3/5スケール(静圧軸受の直径)の縮小モデル

■試験条件

- ・ナトリウム中加振試験
 ・トリウム温度400℃ ※
 ・回転時の軸受周速度約20m/s ※
 ※実機とほぼ同一条件
 ・静圧軸受の衝突面圧が原設計S2の約2倍と
- ・静圧軸受の衝突面圧が原設計520約2倍 なるように正弦波加振した

■試験結果

- ・軸受は原設計S2の約2倍の面圧時でも、
 かじり付かず、機能維持する(回転する)
 ことを確認
- ・試験結果で機能維持が確認できた面圧 から実機静圧軸受の荷重に換算した値を 動的機能維持評価の評価基準値として
 使用 ⇒ 評価基準値 554kN

■評価方法 ⇒ 応答倍率法による評価

基準地震動Ssの発生値 = 原設計の静圧軸受荷重×応答比β

	発生値 (kN)	評価基準値 (kN)	
1次主冷却系循環ポンプ	応答スペクトル波	174	554
静圧軸受荷重	断層モデル波	125	554

内部コンクリート(水平方向)IC04、05包絡、減衰定数1%

○ ○ ○ □ -3. ① 蒸気発生器入口止め弁の動的機能維持評価 「 70 」

◆システム上の機能要求

原子炉トリップ後の崩壊熱除去運転時に<mark>蒸気発生器入口止め弁 を閉め</mark>流路を補助冷却設備に切換えることによって崩壊熱を除 去する

2次主冷却系主配管(ホットレグ)

試験条件

試驗結果

	試験対象	試験項目	試験結果	機能条件	備考			
			76.7秒		加振前			
	作動	作動時間	76.8秒	60~90秒で全開→全閉	加振中			
	22B バタフライ弁		76.6秒		加振後			
	//y//# -	な市泊いい	0 ml/min		加振前			
		井座澜えい	0 ml/min	T.U L/ min以下	加振後			

駆動部の応答加速度が5Gにおいてもナトリウム弁の地震時 動的機能(閉止)は維持される

(④④) エー3. ④ 蒸気発生器入口止め弁の動的機能維持評価結果 73

■評価方法 ⇒ 弁を組み込んだ配管モデルを使用した床応答スペクトル によるスペクトルモーダル解析結果から弁駆動部の応答 加速度を算出

	弁駆動部応答加速度	評価基準値(G)		
	応答スペクトル波	4.85		
A,U// X	断層モデル波	4.26	5.0	
	応答スペクトル波	4.35	5.0	
	断層モデル波	3.82		

※ A,Cループは同一配置、引き廻し

原子炉補助建物AB16、AB17、AB18、AB19の包絡スペクトル、減衰定数3%

Ⅳ. 基準地震動の違いによる比較

️₩. ① もんじゅの基準地震動比較

※水平方向の2/3倍

10

75

(h=0.05)

●●●■■ 2 基準地震動の違いによる発生値の比較1

評価対象	評価部位	評価項目と単位	発生値		評価基準値	備考		
			①S2 ^{※1}	②600Gal ^{※1}	③760Gal ^{※1}			
原子炉建物·原子炉補助建物	耐震壁	せん断ひずみ	0.38 × 10⁻³	0.81 × 10 ^{−3}	0.98 × 10 ^{−3}	2.0 × 10 ^{−3}	(時刻歴応答解析法)	
	2次出口ノズル	応力(MPa)	57	104	126	223		
1次主冷却系中間熱交換器	伝熱管	応力(MPa)	79	146	176	231	(応答倍率法)	
	基礎ボルト	応力(MPa)	52	95	115	361		
	吸込口	応力(MPa)	83	119	173	257		
1次主冷却系循環ポンプ	オーバフローノズル	応力(MPa)	24	34	49	257	(応答倍率法)	
	基礎ボルト	応力(MPa)	23	32	47	341		
	吸込口	応力(MPa)	90	124	164	231		
2次主冷却系循環ポンプ	オーバフローノズル	応力(MPa)	31	43	57	231	(応答倍率法)	
	取付ボルト	応力(MPa)	8	11	14	341		
医马后接处去明	クレーン荷重発生部	応力(MPa)	151	205	288	348		
原于炉格納谷器	下端部	応力(MPa)	39	56	68	232	(応答倍率法)	
制御棒	挿入性	相対変位(mm)	26	26	36	55	(時刻歴応答解析法)	

※1 ①S2 :旧基準地震動S2(466Gal)

②600Gal:平成20年3月報告時 ③760Gal:平成21年3月報告時

77

評価対象	評価部位	評価項目と単位	発生值 ^{※1}		評価基準値	備考		
			①S2 ^{※2}	②600Gal ^{※2}	③760Gal ^{※2}			
	上部フランジ	応力(MPa)	75	105	92	436	(スペクトルモーダル解析法)	
原子炉容器	炉内構造物取付台	応力(MPa)	102	102	136	240	②絶対値和法	
	下部サポート	応力(MPa)	304	308	309	361	③SRSS法	
炉内構造物	支持構造物	応力(MPa)	171	171	151	178	(スペクトルモーダル解析法) ②→③評価式を詳細化	
			31	89	114	245	(スペクトルモーダル解析法)	
1次主冷却系主配管	配管	応力(MPa)	100	107	125	272	上段はホットレグ 下段はコールドレグ	
2次主冷却系主配管	配管	応力(MPa)	231	251	213	260	②スペクトルモーダル解析法 →③3次元シェル評価	
補助冷却設備主配管	配管	応力(MPa)	174	245	214	275	②応答倍率法 →③3次元シェル評価	
			2.44 × 10⁵	—	-	5.72 × 10 ⁵		
補助冷却設備空気冷却器	ダクト	モーメント	_	4.20 × 10⁵	-	5.72 × 10 ⁵	②応答倍率法 →③スペクトルモーダル解析法	
			—	—	5.25 × 10⁵	7.61 × 10⁵		
	ナトリウム出ロノズル	応力(MPa)	169	222	143	258	②広筌倍率法	
共在 & 上 四 / 共 & 四 \			122	160	296	388	→③スペクトルモーダル解析法	
		応力(MPa)	359	427	121	431	スカート下段:支圧応力	
	基礎ボルト	応力(MPa)	306	316	365	408	②→③評価方法を詳細化	

※1:上表は、各基準地震動において評価手法が異なるため、単純に発生値の比較はできない。

※2 ①S2 :旧基準地震動S2(466Gal)

②600Gal:平成20年3月報告時

③760Gal:平成21年3月報告時

@=>● IV. ④ 原子炉容器据付位置の床応答スペクトル比較

内部コンクリート構造物水平方向床応答スペクトル

IC05 EL36.55m(原子炉容器据付位置)、減衰定数1%

内部コンクリート構造物鉛直方向床応答スペクトル

IC05 EL36.55m(原子炉容器据付位置)、減衰定数1%

原子炉容器据付位置の水平方向の床応答スペクトル(減衰定数1%)において、原子炉容器の固有周期における応答加速度を比較すると、S2地震とSs地震で大きな差はない。このため、水平地震力が支配的な炉内構造物取付台、下部サポートではS2地震とSs地震とで発生値の差は小さい。

基準地震動模擬地震波の作成 ○旧基準地震動S2模擬地震波の適合条件 → 減衰5%の疑似応答スペクトルで判定 ○基準地震動(Ss-D)模擬地震波の適合条件 → 減衰5%及び1%の疑似応答スペクトルで判定

旧S2模擬地震波の目標スペクトルへの適合度 (減衰1%、5%) Ss-D模擬地震波の目標スペクトルへの適合度 (減衰1%、5%)

旧S2模擬地震波は減衰5%の目標スペクトルへの適合度は良好であるが、減衰1%の目標スペクトルへの適合度は良くない。旧S2地震動とSs地震動の減衰1%における床応答スペクトル(内部コンクリート)比較において、応答加速度の差が少ない原因の一つは、模擬地震波の目標スペクトルへの適合度に起因する。

評価手法によって発生値は異なり、より詳細な評価を行うことにより裕度は向上する

(④●) IV. ⑨ 評価手法の違いにより裕度が変わる例(その2:参考) 83

評価部位	応力分類	3次元ソリッド要素	解析発生値(MPa)	発生値	(MPa)
	누더라고	応答スペクトル波	94	応答スペクトル波	121
スカート部衣面	又庄心力	断層モデル波	84	断層モデル波	108

FEM解析により、振れ止め金物の断面積で評価を行うことの妥当性を確認

Ⅴ. 参考

- 1. 原子炉建物・原子炉補助建物の評価
- 2. 耐震安全性評価の流れと基準地震動Ss
- 3. 設備概要

V−1. 原子炉建物・原子炉補助建物の評価

◎●● V-1.①原子炉建物・原子炉補助建物の解析モデルと物性値 86

解析モデル概念図

봰	b盤	定	数	
_				

P波速度	S波速度	せん断弾性係数	密度	ポアソン比
(m/s)	(m/s)	(kN/mm²)	(kN/mm³)	<i>ν</i>
4300	1900	9.03	24.5	0.38

解析モデル(水平方向)

建物の材料定数及び減衰定数

	ヤング係数 (kN/mm ²)	せん断弾性係数 (kN/mm ²)	減衰定数※ (%)
鉄筋コンクリート構造物 (T/D,A/B,O/S,I/C)	22.51 (Fc=23.5N/mm²)	9.38	5
溶接鋼構造物 (C/V)	189.26	72.76	1

※:減衰はひずみエネルギー比例型 Fc:設計基準強度

❷●● ∇-1. ② 原子炉建物・原子炉補助建物の地震応答解析結果 87

地震応答解析結果(EW方向):各質点の最大加速度を示す

0.980

部材15

0.524

(部材3)

A/B

I/C

0.483

(部材15)

0.202

(部材3)

0.603

(部材15)

0.209

(部材3)

EW方向

(入力)

耐震壁の最大せん断ひずみは 評価基準値を下回る (部材番号: 15) ($\int_{0}^{0} \int_{0}^{0} \int_{0}^$

基準地震動Ss-DHに対するせん断ひずみ評価結果

0.867

(部材15)

0.161

(部材3)

0.419

(部材15)

0.172

(部材3)

0.537

(部材15)

0.343

(部材3)

Ss-9NS 0.284 (部材20) 0.238 (部材15) 0.174

(部材3)

Ss-9EW

0.203 (部材20)

0.489

(部材15)

0.409

(部材3)

評価項目	解析方向	部位					評価	結果			
		基準地震動	Ss-DH	Ss-1NS	Ss-2NS	Ss-3NS	Ss-4NS	Ss-5NS	Ss-6NS	Ss-7NS	Ss-8NS
		0/8	0.612	0.417	0.352	0.470	0.673	0.576	0.253	0.517	0.167
	Noto	0/3	(部材20)								
	(入力) (入力)	(入力) 人(日	0.894	0.508	0.344	0.618	0,803	0.555	0.267	0.625	0.239
		A/ D	(部材16)	(部材15)	(部材16)	(部材16)	(部材16)	(部材16)	(部材16)	(部材16)	(部材15)
		I/C	0.428	0.267	0.199	0,195	0.221	0.216	0.198	0.462	0.230
せん断 ひずみ		1/0	(部材3)								
γ (× 10 ⁻³)		基準地震動	Ss-DH	Ss-1EW	Ss-2EW	Ss-3EW	Ss-4EW	Ss-5EW	Ss-6EW	Ss-7EW	Ss-8EW
		0/8	0.698	0.495	0.428	0.410	0.224	0.857	0.448	0.560	0.460
		0/3	(部材20)								

0.302

(部材15)

0.208

(部材3)

0.346

(部材15)

0.269

(部材3)

0.785

(部材15)

0.536

(部材3)

原子炉建物·原子炉補助建物評価結果

V-2. 耐震安全性評価の流れと基準地震動Ss

凡例

------・応答スペクトル手法に基づく基準地震動Ss-D
 断層モデル手法に基づく基準地震動※

—— : Ss-1	(554, 553, 32	22)	: Ss-6	(490, 598, 257)
—— : Ss-2	(604, 535, 26	39) <u>—</u>	: Ss-7	(620, 654, 267)
—— : Ss-3	(532, 646, 19	97)	: Ss-8	(529, 594, 241)
—— : Ss-4	(514, 713, 25	51)	: Ss-9	(523, 551, 310)
: Ss-5	(635, 642, 37	76)		. , , .

※凡例の()内の数値は順にNS, EW, UD成分の最大加速度値(ガル)

♥−2.④基準地震動の時刻歴波形(EW方向)

♥ −2. ⑤ 基準地震動の時刻歴波形(UD方向)

500

0

-500

-1000

1000

500

0

-500

-1000

1000

500

0

-500

-1000

1000

500

0

-500

-1000

1000

500

0

-500

-1000

加速度(cm/s/s)

加速度(cm/s/s)

加速度(cm/s/s)

加速度(cm/s/s)

加速度(cm/s/s)

▲▲▲▲
▼ - 2. ⑥ 基準地震動Ssの加速度応答スペクトル(NS方向)

▲ V - 2. ⑦ 基準地震動Ssの加速度応答スペクトル(EW方向)

■水平方向(EW方向)

基準地震動Ssと主要な評価対象設備の固有周期(卓越)との関係

▲▲▲▲
▼ - 2. ⑧ 基準地震動Ssの加速度応答スペクトル(UD方向)

評価対象	評価部位	評価項目と単位	発生値	評価基準値	判定	評価手法
原子炉建物·原子炉補助建物	耐震壁	せん断ひずみ	0.98 × 10⁻₃	2.0 × 10 ^{−3}	0	時刻歴応答解析
	上部フランジ	応力(MPa)	92	436	0	
原子炉容器	炉内構造物取付台	応力(MPa)	136	240	0	スペクトルモーダル解析
	下部サポート	応力(MPa)	309	361	0	
炉内構造物	支持構造物	応力(MPa)	151	178	0	スペクトルモーダル解析
1次主冷却系主配管	配管	応力(MPa)	114	245	0	スペクトルモーダル解析
	2次出ロノズル	応力(MPa)	126	223	0	
1次主冷却系中間熱交換器	伝熱管	応力(MPa)	176	231	0	応答倍率法
	基礎ボルト	応力(MPa)	115	361	0	
	吸込口	応力(MPa)	173	257	0	
1次主冷却系循環ポンプ	オーバフローノズル	応力(MPa)	49	257	0	応答倍率法
	基礎ボルト	応力(MPa)	47	341	0	
2次主冷却系主配管	配管	応力(MPa)	213	260	0	3次元シェル評価
	吸込口	応力(MPa)	164	231	0	
2次主冷却系循環ポンプ	オーバフローノズル	応力(MPa)	57	231	0	応答倍率法
	取付ボルト	応力(MPa)	14	341	0	
補助冷却設備主配管	配管	応力(MPa)	214	275	0	3次元シェル評価
補助冷却設備空気冷却器	ダクト	モーメント(kN・mm)	5.25 × 10⁵	7.61 × 10 ⁵	0	スペクトルモーダル解析
百子后枚纳穴哭	クレーン荷重発生部	応力(MPa)	288	348	0	広 な 在 な 注
	下端部	応力(MPa)	68	232	0	心台旧半丛
	ナトリウム出ロノズル	応力(MPa)	143	258	0	
蒸気発生器(蒸発器)	スカート	応力(MPa)	296	388	0	スペクトルモーダル解析
	基礎ボルト	応力(MPa)	365	408	0	
制御棒	挿入性	相対変位(mm)	36	55	0	時刻歴応答解析

: 断層モデル波による発生値を示す

発生値はすべて評価基準値を下回っており、耐震安全性を確保していることを確認

V-3. 設備概要

- ① 原子炉構造
- ② 原子炉格納容器
- ③ 1次主冷却系中間熱交換器
- ④ 1次主冷却系循環ポンプ
- ⑤ 2次主冷却系循環ポンプ
- ⑥ 補助冷却設備空気冷却器
- ⑦ 1次主冷却系及び2次主冷却系主配管
- ⑧ 蒸気発生器
- ⑨ 炉外燃料貯蔵槽

2次側入口配管 2次側出口配管 ٢ Ô, 上部プレナム ゙サポート胴 上部管板 外部シュラウド **//3 φ 2.9 m** 伝熱管 ドレン抜き 約12.1m 1次側入口ノズル 下降管 下部管板、 下部プレナム 胴 体 ന 1次側出口ノズル

形式	たて型無液面平行向流型				
数量	3基				
質量	約170t/基				
機器区分	高速原型炉第1種容器/第3種容器				
耐震クラス	S(Asクラス)				
主要寸法	胴内径 約φ2900mm×高さ 約12100mm 肉厚 約30mm				
主要材料	SUS304				
伝熱管寸法	外径 約 ϕ 22mm×肉厚 約1mm				
伝熱管本数	3294本				
定格伝熱量	238 MWt/基				
定格温度	胴側入口 529℃, 胴側出口 397℃ 管側入口 325℃, 管側出口 505℃				
最高使用圧力 (内圧)	胴側:0.196MPa(2kg/cm ²) 管側:0.981MPa(10kg/cm ²)				

型式	機械式たて型自由液面遠心式					
数量	3基					
質量	約150t/基					
機器区分	高速原型炉第1種ポンプ					
耐震クラス	S (Asクラス)					
主要寸法	ケーシング:約φ1700mm × 約8200mm ポンプ全高:約10500mm					
主要材料	SUS304					
流量	主モータ : 5970 m³/h ポニーモータ : 735 m³/h					
定格運転温度	397°C					
定格回転速度	主モータ : 837 rpm ポニーモータ : 86 rpm					
最高使用圧力	内圧(低圧/高圧):0.196/0.981MPa (2/10 kg/cm²) 外圧:0.098MPa(1 kg/cm²)					
軸封構造	メカニカルシール式					
軸受構造	静圧軸受					
自動制御 運転範囲	定格出力の40~100%					

型式	機械式たて型自由液面遠心式					
数量	3基					
質量	約30t/基					
機器区分	高速原型炉第3種ポンプ					
耐震クラス	S(Asクラス)					
主要寸法	ケーシング : 約 <i>φ</i> 1000mm × 約4300mm ポンプ全高 : 約5600mm					
主要材料	SUS304					
流量	主モータ : 4278 m³/h ポニーモータ : 309 m³/h					
定格運転温度	325°C					
定格回転速度	主モータ : 1100 rpm ポニーモータ : 183 rpm					
最高使用圧力	内圧(低圧/高圧): 0.588/0.882MPa (6/9 kg/cm²) 外圧: 0.098MPa(1 kg/cm²)					
軸封構造	メカニカルシール式					
軸受構造	静圧軸受					
自動制御 運転範囲	定格出力の40~100%					

	1次主冷却系主配管				2次主冷却系主配管		
	ホットレグ	クロスオーバレグ	コールドレグ		ホットレグ	ミドルレグ	コールドレグ
機器区分	高速原型炉第1種管			機器区分	高速原型炉第3種管		
耐震クラス	S(Asクラス)			耐震クラス	S(Asクラス)	Bクラス	S(Asクラス)
主要管外径	約 0812.8mm	約 <i>ϕ</i> 812.8mm	約 <i>ϕ</i> 609.6mm	主要管外径	約 <i>ф</i> 558.8mm	約 <i>ф</i> 558.8mm	約 <i>ф</i> 558.8mm
主要管肉厚	約11.1mm	約11.1mm	約9.5mm	主要管肉厚	約9.5mm	約9.5mm	約9.5mm
外径/肉厚比	約73	約73	約64	外径/肉厚比	約59	約59	約59
運転温度	約529°C	約397°C	約397°C	運転温度	約505°C	約469°C	約325°C
最高使用圧力	約0.196MPa (約2kg/cm²)	約0.196MPa (約2kg/cm²)	約0.981MPa (約10kg/cm²)	最高使用圧力	約0.785MPa (約8kg/cm²)	約0.588MPa (約6kg/cm²)	約0.883MPa (約9kg/cm²)
材質	SUS304			材質	SUS304		

W-3. ⑧-1 蒸気発生器(蒸発器)の概要

給水入口 形式 ヘリカルコイル貫流式分離型 蒸気出口 数量 3基 質量 約180t/基 機器区分 高速原型炉第3種容器(主要部分) 反応生成物 放出ノズル 耐震クラス Bクラス ナトリウム入口 胴内径約 Ø 3000mm × 高さ約15200mm 主要寸法 胴 胴肉厚(上/下部)約50/25mm 下降管 低合金鋼(2·1/4Cr-1Mo錮) 主要材料 約15.2m 伝熱管寸法 外径 約 φ 31 mm × 肉厚 約 4 mm 約ø3m 140 本 伝熱管本数 190.8 MWt/基 定格伝熱量 ヘリカルコイル形 伝熱管 Na側入口:469°C. 出口:325°C 定格温度 水·蒸気側入口 240℃. 出口 369℃ 最高使用圧力 Na側: 0.49MPa (5kg/cm²) オーバフロー ノズル 伝熱管:16.2MPa (165kg/cm²) (内圧) ナトリウム出口

W→3. ⑧→2 蒸気発生器(過熱器)の概要
 M → 3. ⑧→2 蒸気発生器(過熱器)の概要
 M → 4.00

蒸気入口、 ノズル 蒸気出口ノズル 反応生成物放出ノズル 上部胴 、 ナトリウム 入口ノズル 約**0**3.2m 本体フランジ 約11.8m 下降管 下部胴 本体スカート ヘリカル コイル形 伝熱管 ナトリウム出口ノズル

形式	ヘリカルコイル貫流式分離型
数量	3基
質量	約110t/基
機器区分	高速原型炉第3種容器(主要部分)
耐震クラス	Bクラス
主要寸法	胴内径約φ3200mm×高さ約11800mm 胴肉厚(上/下部)約45/30mm
主要材料	オーステナイト系ステンレス鋼 (SUS304, SUS321)
伝熱管寸法	外径 約φ32mm×肉厚 約4mm
伝熱管本数	147 本
定格伝熱量	47.2 MWt/基
定格温度	Na側入口:505℃,出口:469℃ 蒸気側入口 367℃,出口 487℃
最高使用圧力 (内圧)	Na側:0.49MPa(5kg/cm²) 伝熱管:15.1MPa(154kg/cm²)

108

案内装置

案内筒

1.

• |-]|-

駆動装置。

しゃへい

プラグ

燃料移送

駆動軸

回転ラック

ナトリウム中

軸受装置

ポット

上部軸受装置

1.

1

冷却管

外容器

燃料貯蔵容器

函

CONTRACTOR OF STREET

床ドアバルブ

Ε

17

笩

۵

8.7**.**m

쐰

形式 たて形円筒二重容器 数量 1基 約750t 皙 量 (内包ナトリウム、燃料移送 ポット、炉心構成要素を含む) 機器区分 高速原型炉第3種容器 耐震クラス S(Asクラス) 燃料貯蔵容器: 胴内径約φ6100mm×高さ約8700mm 主要寸法 胴肉厚(胴板/鏡板部)約40/50mm 主要材料 SUS304 燃料貯蔵 約250体 容量 ナトリウム 約160m³ 容量 180~240°C(ナトリウム) 運転温度 最高使用 圧力 $0.147 MPa(1.5 kg/cm^2)$ (内圧)

109

参考資料

高速増殖原型炉もんじゅ 新耐震指針に照らした耐震安全性評価

耐震安全性評価結果一覧表

平成 22 年 2 月 13 日

独立行政法人日本原子力研究開発機構

敦賀本部

No		亚西计争恐带	耐震	亚研究在 ※1	広由公和	応答スペクトル波	断層モデル波 ※2	評価基準値	预価方法 ※2	供考
INU.		品面と多以通	クラス		心力力投	発生値 (MPa)	発生値 (MPa)	(MPa)	計画2724 次3	四 75
1				入口ノズル	膜応力	183	182	257		
2				出口ノズル	膜応力	103	91	231		
3				オーバフロー 汲上ノズル	膜応力	129	128	234	スペクトル	
4		原子炉容器	As	上部フランジ	膜+曲げ応力	92	77	436	モーダル解析法	
5				炉内構造物取付台	膜応力	136	135	240		
6				下部サポート	膜+曲げ応力	309	300	361		
7				炉心槽	膜応力	108	102	239		
8		炉内構造物	As	炉内構造 支持構造物	支圧応力	151	145	178	スペクトル モーダル解析法	
9				据付ボルト	膜応力	69	56	253		
10				原子炉容器 据付ボルト	引張応力	244	243	490		
11		原子炉容器支持構造物	As	下部支持構造物	曲げ応力	73	72	392	スペクトル モーダル解析法	
12				下部支持構造物 基礎ボルト	引張応力	122	121	185		
13	原子			燃料交換装置 案内筒胴	膜応力	128	120	306		
14	炉 本 体	しゃへいプラグ	A	炉内中継装置 上部案内筒胴	膜応力	41	31	265	応答倍率法に	
15		反0 炉心上部機構		炉心上部機構 しゃへい部胴本体	膜応力	109	82	253	よる評価1	
16			As	制御棒上部案内管 (取付部)	膜応力	112	84	219		
17		炉心燃料集合体	А	中間部スペーサ パッド部	膜+曲げ応力	126	71	388	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−5の値
18		ブランケット燃料集合体	А	中間部スペーサ パッド部	膜+曲げ応力	224	134	319	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−1の値
19		中性子しゃへい体	А	中間部スペーサ パッド部	膜+曲げ応力	322	315	524	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−1の値
20		中性子源集合体	А	上部スペーサ パッド部	膜+曲げ応力	159	155	413	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−1の値
21		試験用しゃへい体	А	中間部スペーサ パッド部	膜+曲げ応力	322	315	573	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−1の値
22		原子炉容器上部プレナム 試験用熱電対プラグ	А	取付ボルト	引張応力	77	75	159	時刻歴応答 解析法	
23				下部井北	膜応力	31	27	234	応答倍率法に よる評価1	
24		原子炉容器 ガードベッセル	A -	下部サポート	膜応力	144	147	245	スペクトル モーダル解析法	弾性設計用地震動Sdと 1次冷却材漏えい事故と の組合せ
25				垠けポルト	引張応力	269	274	502	応答倍率法に よる評価2	
26				רוע ניו מע	引張応力	286	288	506	スペクトル モーダル解析法	弾性設計用地震動Sdと 1次冷却材漏えい事故と の組合せ

第1表(1/8) 機器の構造強度評価結果

No		莎 (五) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	耐震	预准却法 义1	広 古八類	応答スペクトル波	断層モデル波 ※2	評価基準値		/# *
INU.		計恤刈承改哺	クラス	計画的17 ※1	心力方類	発生値 (MPa)	発生値 (MPa)	(MPa)	許恤力法 火3	通考
27				2次出口ノズル	膜応力	126	105	223		
28		1次主冷却系中間熱交換器	As	伝熱管	膜応力	176	147	231	応答倍率法に よる評価1	
29				基礎ボルト	せん断応力	115	96	361		
30				+++-+	組合せ応力	37	23	127	応答倍率法に	
31		1次主冷却系中間熱交換器		文持スカート	組合せ応力	42	43	94	よる評価1	弾性設計用地震動Sdと 1次冷却材漏えい事故と の組合せ
32		ガードベッセル	A	The () 18 cm (せん断応力	67	42	145	応答倍率法に	
33				取付ホルト	せん断応力	48	50	145	よる評価1	弾性設計用地震動Sdと 1次冷却材漏えい事故と の組合せ
34				吸込口	膜応力	173	117	257		
35		1次ナ次和石浜温光、プ	A -	オーバフローノズル	膜応力	49	33	257	応答倍率法に	
36		「次土市却糸循環小ノノ	As	基礎ボルト	せん断応力	47	32	341	よる評価1	
37				ポニーモータ駆動 装置取付ボルト	引張応力	195	132	444		
38	原			+++-+	組合せ応力	37	23	127	応答倍率法に	
39	子炉冷れ	ス ス う 1次主冷却系循環ポンプ		文持スカート	組合せ応力	48	50	94	よる評価1	弾性設計用地震動Sdと 1次冷却材漏えい事故と の組合せ
40	山系 系説 協	ガードベッセル を	A	取付ボルト	せん断応力	47	30	145	応答倍率法に	
41	設			取付ホルト	せん断応力	42	43	145	よる評価1	弾性設計用地震動Sdと 1次冷却材漏えい事故と の組合せ
42				入口ノズル	膜応力	205	187	241	スペクトル モーダル解析法	
43		1次主冷却系循環ポンプ オーバフローコラム	As	カバーガス連通 ノズル	膜応力	145	110	260	応答倍率法に よる評価1	
44				取付ボルト	せん断応力	30	22	159	応答倍率法に よる評価1	
45		1次ナトリウムオーバフロー系		炉容器汲上ノズル	膜応力	98	78	215	応答倍率法に	
46		オーバフロータンク	A	基礎ボルト	せん断応力	21	16	145	よる評価1	
47		1次ナトリウムオーバフロー系		ダクト	膜+曲げ応カ	43	35	322	応答倍率法に	
48		電磁ポンプ	~	取付ボルト	せん断応力	20	16	106	よる評価1	
49		1次メンテナンス冷却系	A -	1次側胴板	膜応力	19	22	234	応答倍率法に	
50		1次メンテナンス冷却系 中間熱交換器	AS	取付ボルト	せん断応力	17	20	158	よる評価1	
51		1次メンテナンス冷却系	^	ダクト	膜+曲げ応カ	52	42	351	応答倍率法に	
52		1次メンテナンス冷却系 循環ポンプ		取付ボルト	引張応力	46	37	146	よる評価1	

第1表(2/8) 機器の構造強度評価結果

No			亚体动象部体	耐震	款债款估 ※1	広古公叛	応答スペクトル波	断層モデル波 ※2	評価基準値	预历士法 ※2	供 老
INU.			計逥刈豕設備	クラス	1※ 立伯则书	心力力與	発生値 (MPa)	発生値 (MPa)	(MPa)	計画力法 ※3	加方
53			1次アルゴンガス系	Δ	ラグ	組合せ応力	47	53	142	スペクトル モーダル解析法	
54			原子炉容器ベーパトラップ		取付ボルト	引張応力	153	131	206	応答倍率法に よる評価1	
55			1次アルゴンガス系		ラグ	組合せ応力	26	33	142	スペクトル モーダル解析法	
56		1次冷	原子炉容器ミストトラップ	A	取付ボルト	引張応力	130	111	206	応答倍率法に よる評価1	
57		却系設備	1次アルゴンガス系		胴板	膜応力	56	53	265	応答倍率法に	
58		1)用	常温活性炭吸着塔	A	取付ボルト	引張応力	27	26	206	よる評価1	
59			1次アルゴンガス系 原子炉容器ベーパトラップ 出口第1フィルタ	А	取付ボルト	引張応力	7	7	154	応答倍率法に よる評価1	
60			1次アルゴンガス系 原子炉容器ベーパトラップ 出口第2フィルタ	А	ラグ	組合せ応力	25	23	206	応答倍率法に よる評価1	
61					吸込口及び 胴付根部	膜応力	164	154	231		
62					オーバフローノズル	膜応力	57	53	231	応答倍率法に	
63			2次主冷却糸循環ホンフ	As	ポンプ 取付ボルト	せん断応力	14	13	341	よる評価1	
64					ポニーモータ駆動 装置取付ボルト	引張応力	32	30	444		
65	原子炉		2次主冷却系循環ポンプ		ラグ	組合せ応力	49	33	146	スペクトル モーダル解析法 応答倍率法に よる評価2'	断層モデル波の評価は 応答スペクトル波の解析
66	冷却系		オーバフローコラム	As	取付ボルト	引張応力	36	25	175	スペクトル モーダル解析法 応答倍率法に よる評価2'	結果に基づく応答倍率 法による評価
67	統施設				ナトリウム 出ロノズル	膜応力	135	143	258	0.001	
68			2次主冷却系設備 蒸気発生器(蒸発器)	в	スカート	支圧応力	121	108	431	スペクトル モーダル解析法	
69		2 次			基礎ボルト	引張応力	365	359	408		
70		冷却系			ナトリウム 出ロノズル	膜+曲げ応カ	102	100	336		
71		設備	2次主冷却系設備 蒸気発生器(過熱器)	в	スカート	膜応力	61	60	232	応答倍率法に よる評価1	
72					取付ボルト	せん断応力	79	78	178		
73						座屈荷重	5.25 × 10 ⁵	-	7.61 × 10 ⁵		単位 : kN · mm 評価基準値※4参照
74					田口ダクト(工部)	(モーメント)	_	5.31 × 10 ⁵	7.71 × 10 ⁵		断層モデル波の発生値 は最大となるSs−4の値
75			補助冷却設備空気冷却器	As	1 ロダクレ	座屈荷重	1.58 × 10 ⁵	-	1.33 × 10 ⁶	スペクトル モーダル解析法	単位 : kN · mm 評価基準値※4参照
76						(モーメント)	-	1.75 × 10 ⁵	1.35 × 10 ⁶		断層モデル波の発生値 は最大となるSs−4の値
77					出ロダクト(上部) 取付ボルト	引張応力	61	52	175		断層モデル波の発生値 は最大となるSs-5の値
78			補助冷却設備空気冷却器用	٨	送風機ケーシング 基礎ボルト	引張応力	62	57	185	スペクトル	
79			送風機	As	原動機 取付ボルト	せん断応力	21	22	142	モーダル解析法	
								-			

第1表(3/8) 機器の構造強度評価結果

ſ				耐震		土口の村	応答スペクトル波	断層モデル波 ※2	評価基準値		
	NO.		評恤对家設備	クラス	評価部位 ※1	心刀分類	発生値 (MPa)	発生値 (MPa)	(MPa)	評価方法 ※3	備 考
	80		2次メンテナンス冷却系		スカート	組合せ応力	74	60	206	応答倍率法に	
	81		膨張タンク	А	取付ボルト	引張応力	66	54	206	よる評価1	
Ī	82	2 次	2次メンテナンス冷却系		ダクト	膜+曲げ応力	214	157	351	応答倍率法に	
ľ	83	(冷却系	循環ポンプ	A	ポンプ 取付ボルト	せん断応力	40	41	112	よる評価1	
	84	設備	2次メンテナンス冷却系 空気冷却器	А	本体枠組 取付ボルト	せん断応力	14	12	107	応答倍率法に よる評価1	
	85		2次メンテナンス 冷却系		送風機ケーシング 基礎ボルト	引張応力	38	39	203	広体を注け	
ľ	86		空気冷却器用送風機	A	軸受基礎ボルト (固定側)	引張応力	59	60	203	よる評価1	
ľ	87		機器冷却系		基礎ボルト (ユニットB)	せん断応力	32	29	159	広体を注け	
	88		ポニーモータ冷却ユニット及び 冷却ファン	As	冷却ユニット取付 ボルト(ユニットB)	せん断応力	9	8	159	よる評価1	
	89 原	機器冷	機器冷却系		基礎ボルト	引張応力	57	56	211	応答倍率法に	
ľ	子 90 炉 冷	1 系設備	電磁ホンフ冷却ユニット及び 電磁ポンプ冷却ファン	A	ファン取付ボルト	引張応力	25	24	185	よる評価1	
ľ	到 <u>91</u> 新	11用	機器冷却系冷却ポンプ	As	基礎ボルト	引張応力	7	6	211	応答倍率法に よる評価1	
	92 92		機器冷却系サージタンク	As	基礎ボルト	引張応力	117	93	211	応答倍率法に よる評価1	
	93				基礎ボルト (C号機)	せん断応力	12	9	360	応答倍率法に	
	94		原子炉補機冷却水ホンフ	As	原動機取付ボルト (C号機)	せん断応力	10	8	140	よる評価1	
Ī	95	原 子	┏ᄀᆮᆄᄴᄿᇷᆈᆃᅭᄜ		胴板 (C号機)	膜+曲げ応力	104	84	345	応答倍率法に	
	96	炉補機	原于炉桶懱冷却水熱父撄奋	As	基礎ボルト (C号機)	せん断応力	55	45	162	よる評価1	
	97	^冷 却水	原子炉補機冷却水		基礎ボルト	리프로노	141	-	211	応答倍率法に よる評価2'	苏压甘进店议口名网
	98	海水系	サージタンク	As	(C号機)	51 張心刀	_	154	194	応答倍率法に よる評価1	評価基準個※5麥照
I	99	小設備	原子炉補機冷却	^	基礎ボルト (A、B、C号機)	せん断応力	17	19	119	応答倍率法に	
Ī	100		海水ポンプ	As	原動機取付ボルト (A、B、C号機)	引張応力	17	19	154	よる評価1	
Ī	101		原子炉補機冷却 海水ストレーナ	As	基礎ボルト (A、B号機)	引張応力	91	84	488	応答倍率法に よる評価1	

第1表(4/8) 機器の構造強度評価結果

No		亚体为金乳供	耐震	预准初告 义1	亡事公類	応答スペクトル波	断層モデル波 ※2	評価基準値	预任卡法 义?	<u> </u>
INU.		計Ш刈豕苡脯	クラス	計画的位於1	心力力與	発生値 (MPa)	発生値 (MPa)	(MPa)	計11四方法 123	通考
102		微調整棒集合体	As	上部スペーサ パッド部	膜+曲げ応力	152	121	418	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−8の値
103		後備炉停止棒集合体	As	上部スペーサ パッド部	膜+曲げ応力	167	132	408	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−8の値
104		粗調整棒集合体	As	上部スペーサ パッド部	膜+曲げ応カ	190	151	418	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−8の値
105		固定吸収体	А	上部スペーサ パッド部	膜+曲げ応カ	159	155	417	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−1の値
106		微調整棒駆動機構	As	上部案内管	膜応力	12	8	253	応答倍率法に よる評価1	
107		後備炉停止棒駆動機構	As	上部案内管	膜応力	50	33	241	応答倍率法に よる評価1	
108		粗調整棒駆動機構	As	上部案内管	膜応力	45	29	207	応答倍率法に よる評価1	
109		核計装	А	減速体上部固定 ボルト	せん断応力	200	181	342	応答倍率法に よる評価1	
110		制御田穴有正紋機	^	基礎ボルト	せん断応力	23	18	162	応答倍率法に	
111		で、「「「」」、「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「		圧縮機 取付ボルト	引張応力	59	48	211	よる評価1	
112		制御田空气腔搏	^	胴板	膜応力	85	69	240	応答倍率法に	
113	計	ᆒᆒ茄ᆂᆾᅆᆡᇃ		基礎ボルト	せん断応力	11	9	162	よる評価1	
114	測 制 御	制御田空気マフタク―ラ	Δ	胴板	膜応力	23	18	215	応答倍率法に	
115	系統施設			基礎ボルト	引張応力	8	6	211	よる評価1	
116	設	制御田空気ドレンセパレータ	Δ	胴板	膜応力	20	16	240	応答倍率法に	
117				基礎ボルト	引張応力	6	5	211	よる評価1	
118		制御田空気除湿装置除湿塔	Δ	胴板	膜応力	30	25	234	応答倍率法に	
119		前與川王又称加茲世称加加		基礎ボルト	引張応力	12	10	211	よる評価1	
120		制御用空気除湿装置	Δ	胴板	膜応力	20	16	210	応答倍率法に	
121		再生空気加熱器	~	基礎ボルト	引張応力	18	15	211	よる評価1	
122		制御用空気除湿装置	Δ	胴板	膜+曲げ応力	35	28	315	応答倍率法に	
123		制御用空気除湿装直 再生空気冷却器		基礎ボルト	引張応力	17	14	211	よる評価1	
124		制御用空気除湿装置	Δ	胴板	膜応力	18	15	216	応答倍率法に	
125		ドレンセパレータ		基礎ボルト	引張応力	6	5	211	よる評価1	
126		制御田空気ス温哭	Δ	胴板	膜応力	21	17	216	応答倍率法に	
127		thtmlのX Holding		基礎ボルト	引張応力	5	4	211	よる評価1	

第1表(5/8) 機器の構造強度評価結果

Ne		表示/도 녹, 슈 表, 此	耐震	€ ス 評価部位 ※1	古 五八将	応答スペクトル波	断層モデル波 ※2	評価基準値		<u> </u>
INO.		詽偭刈豕訤儞	クラス	評価部位 ※1	心力分類	発生値 (MPa)	発生値 (MPa)	(MPa)	評価方法 ※3	通行
128		遅発中性子法破損燃料	Δ	案内管	組合せ応力	139	59	206	スペクトル モーダル解析法 応答倍率法に よる評価2	断層モデル波の評価は応答ス ペクトル波の解析結果に基づく 応答倍率法による評価
129	計	検出装置		しゃへい体 支持構造物	組合せ応力	156	97	261	スペクトル モーダル解析法	
130	測 制 御	原子炉格納容器内 エリアモニタ	As	取付ボルト	引張応力	5	5	209	応答倍率法に よる評価1	
131	糸統施	燃料出入機冷却ガスモニタ	А	取付ボルト	引張応力	8	8	209	応答倍率法に よる評価1	
132	設	工学的安全施設中央制御盤		基礎溶接部	組合せ応力	19	14	162	応答倍率法に よる評価1	
133		補助冷却設備補助盤	As	取付ボルト	引張応力	24	18	211	応答倍率法に よる評価1	

第1表(6/8) 機器の構造強度評価結果

No		証准计备乳进	耐震		広 古 八 新	応答スペクトル波	断層モデル波 ※2	評価基準値		供
INU.		計Ш刈豕設開	クラス	計画即位※1	心力方類	発生値 (MPa)	発生値 (MPa)	(MPa)	計画方法 火3	通方
134		炉内中継装置	А	燃料出入用 接続筒	膜応力	27	16	263	応答倍率法に よる評価1	
135		※非当日3 +後本/+ A	•	支持円筒	組合せ応力	198	146	247	応答倍率法に よる評価1	
136		然村山入俄平冲A	A	支持円筒 取付ボルト	引張応力	210	191	456	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−7の値
137		+ <i>c</i> / =		ロケータピン	組合せ応力	397	433	490	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−7の値
138		定 行 台単	A	レールガーダ 基礎ボルト	引張応力	37	39	281	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−7の値
139		燃料出入機冷却装置 本体A間接冷却系ブロワ	А	取付ボルト	引張応力	25	24	203	応答倍率法に よる評価1	
140		炉外燃料貯蔵槽燃料貯蔵容器	As	ボルト	せん断応力	85	62	381	応答倍率法に よる評価1	
141		行之来之子并并之外也		-12 a 1	리프로누	108	_	183	時刻歴応答 解析法	評価基準値※5参照
142		炉外燃料貯廠槽外谷器	A	ホルト	51	_	72	185	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs-7の値
143		炉外燃料貯蔵槽 しゃへいプラグ	А	案内装置案内筒	膜応力	23	21	253	応答倍率法に よる評価1	
144	核	ᄹᆈᄴᅆᅇᄡᆓᅓᇢᆂᅭᄼ		駆動軸	組合せ応力	68	40	172	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−8の値
145	料物質	炉外燃料貯廠槽回転フツク	As	下部振止 取付ボルト	引張応力	87	53	128	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−8の値
146	くの 取 扱	炉外燃料貯蔵槽冷却系		脚	組合せ応力	67	59	167	応答倍率法に	
147	施 設 及	膨張タンク	As	取付ボルト	引張応力	59	52	470	よる評価1	
148	び 貯 蔵	炉外燃料貯蔵槽冷却系	A -	脚	組合せ応力	37	33	172	応答倍率法に	
149	池設	ナトリウム加熱器	AS	取付ボルト	引張応力	52	47	470	よる評価1	
150		炉外燃料貯蔵槽冷却系 循環ポンプ	As	循環ポンプA 取付ボルト	せん断応力	21	20	362	応答倍率法に よる評価1	
151		炉外燃料貯蔵槽冷却系 空気冷却器	As	取付ボルト	引張応力	98	88	470	応答倍率法に よる評価1	
152		炉外燃料貯蔵槽冷却系	A -	ケーシング 基礎ボルト	引張応力	17	15	470	応答倍率法に	
153		空気冷却器用送風機	AS	原動機 取付ボルト	せん断応力	9	8	362	よる評価1	
154		水中台車	As	外筒	組合せ応力	27	28	206	応答倍率法に よる評価1	
155				ガーダ	曲げ応力	125	93	271	応答倍率法に よる評価1	
156		燃料移送機	в	走行トラックサイド ローラ軸	組合せ応力	40	42	336	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs-5の値
157				横行台車サイド ローラ軸	組合せ応力	167	139	336	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−5の値
158		貯蔵ラック	As	基礎ボルト	引張応力	127	94	154	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−5の値
159		燃料池	As	ライナ固定部	せん断応力	25	25	53	応答倍率法に よる評価1	

第1表(7/8) 機器の構造強度評価結果

		=== /== ++ - === /++	耐震		亡士八年	応答スペクトル波	断層モデル波 ※2	評価基準値		/# *
INO.		評恤对家設 備	クラス	評価部位 ※1	心刀分類	発生値 (MPa)	発生値 (MPa)	(MPa)	評価方法 ※3	偏ろ
160				リングガーダ 取付部	膜+曲げ応カ	261	288	348	応答倍率法に よる評価1	クレーン吊荷重を 考慮
161		持续查照主任		強め輪取付部	膜応力	59	68	232	応答倍率法に よる評価2	クレーン吊荷重を 考慮
162		恰納谷奋本体	As		+ -	0.50	0.61	1.00	時刻歴応答 解析法	FEM解析 断層モデル波の発生値 は最大となるSs-7の値
163	原子			ト端部頻の輪間	座屈 ≫6	0.84	0.99	1.00	時刻歴応答 解析法	JEAG4601に基づく評価 断層モデル波の発生値 は最大となるSs-7の値
164	,炉格納	アニュラスシール	А	支持ブラケット端 ボルト	せん断力	29	27	44	応答倍率法に よる評価1	単位:kN/本
165	施設	バキュームブレーカ	As	配管	膜+曲げ応力	98	57	315	応答倍率法に よる評価1	
166		アニュラス循環排気ファン	А	基礎ボルト	引張応力	31	28	211	応答倍率法に よる評価1	
167		アニュラス循環排気装置 微粒子用フィルタユニット	А	基礎ボルト	せん断応力	24	23	162	応答倍率法に よる評価1	
168		アニュラス循環排気装置 よう素用フィルタユニット	А	基礎ボルト	せん断応力	54	49	162	応答倍率法に よる評価1	
169		中央制御室空調ファン	А	基礎ボルト	引張応力	39	35	211	応答倍率法に よる評価1	
170		中央制御室浄化ファン	А	基礎ボルト	引張応力	19	17	211	応答倍率法に よる評価1	
171	換気空	中央制御室排気ファン	А	支持脚取付ボルト	引張応力	25	22	204	応答倍率法に よる評価1	
172	調 設 備	中央制御室浄化フィルタユニット	А	基礎ボルト	せん断応力	29	26	162	応答倍率法に よる評価1	
173		燃料取扱設備室浄化ファン	А	基礎ボルト	引張応力	21	21	211	応答倍率法に よる評価1	
174		燃料取扱設備室 浄化フィルタユニット	А	基礎ボルト	せん断応力	24	25	162	応答倍率法に よる評価1	
175		ディーゼル発電機	As	発電機軸受台取付 ボルト	せん断応力	38	26	140	応答倍率法に よる評価1	
176		焼火ゴンク	4.0	甘 쟈 ᅷ ╷ ㄴ	리랴여누	91	_	200	スペクトル	预压甘淮店 公5 发 昭
177		※ *** / 1 > 2 >	AS	奉徒ハルト	רע טיי אנו כ	_	69	209	モーダル解析法	計画委卡區公3多照
178	その	·하는 사내		胴板	膜応力	90	137	267	応答倍率法に よる評価2 応答倍率法に よる評価1	
179	他原子	오치(~~)	As	基礎ボルト	引張応力	40	24	209	応答倍率法に よる評価1	
180	炉の附属	インバータ盤A-1	As	基礎ボルト	引張応力	12	9	211	応答倍率法に よる評価1	
181	施設	蓄電池	As	基礎ボルト	せん断応力	38	29	162	応答倍率法に よる評価1	
182				ガーダ	組合せ応力	142	132	412		断層モデル波の発生値 は最大となるSs-9の値
183		ポーラクレーン	с	旋回車輪ツバ	せん断応力	52	49	310	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−8の値
184				横行車輪ツバ	せん断応力	31	18	310		断層モデル波の発生値 は最大となるSs−8の値
185	放 射 性			筒身	座屈 ※6	0.79	0.62	1.00		断層モデル波の発生値 は最大となるSs−7の値
186		排気筒	А	鉄塔	座屈 ※6	0.74	0.54	1.00	時刻歴応答 解析法	断層モデル波の発生値 は最大となるSs−7の値
187	の 廃 棄				引張応力	95	83	225		断層モデル波の発生値 は最大となるSs-7の値

第1表(8/8) 機器の構造強度評価結果

※1 各設備において、評価基準値に対する発生値の割合が最大となる評価部位を含んだものを記載。
 ※2 断層モデル波の評価結果は備考に注記がない場合は、Ss-1~Ss-9の包絡スペクトルによる評価。
 ※3 同一の評価部位で評価方法が応答スペクトル波と断層モデル波で異なる場合は、上欄に応答スペクトル波の評価方法を、下欄に断層モデル波の評価方法を示す。
 ※4 補助冷却設備空気冷却器のダクトの評価基準値は、地震により発生する鉛直荷重を考慮して算出するため、応答スペクトル波と断層モデル波で異なる。
 ※5 引張応力の評価基準値はせん断応力の大きさにより異なるため、応答スペクトル波と断層モデル波で異なる。
 ※6 座屈の値は軸圧縮荷重と曲げモーメントのそれぞれについて発生値と許容値の比率で求めたものであり、単位は無次元である。

第2表(1/12) 配管の構造強度評価結果

		評価対象設備		雪插	評価部位		応答スペクトル波	断層モデル波 ※2	評価基準値																	
No.		P	¥恤対象設備	クラス	(配管No.)	応力分類	発生値 ※1 (MPa)	発生値 ※1 (MPa)	(MPa)	評価万法 ※3	備考															
1						一次応力	114	75	245		3ループ(A、B、C)ともに															
2					PHTS-001 ※4	一次応力	93	79	245	スペクトル	同一仕様、配置 断層モデル波の発生値は応答ス ペクトル波の発生値に対応する延															
3						一次応力	92	55	245	モーダル解析法	価点に合わせた															
4					配管支持装置	耐荷重 ※5	145	102	153																	
5						一次応力	68	44	272		3ループ(A、B、C)ともに															
6					PHTS-002 ※4	一次応力	66	51	272		同一仕様、配置 断層モデル波の発生値は応答ス ペクトル波の発生値に対応する 運															
7			1次主冷却系主配管	As		一次応力	50	44	272	スペクトル モーダル解析法	価点に合わせた															
8					配签支持状置	耐荷香 ※5	119	-	153		応答スペクトル波と断層モデル波 で配管支持装置の評価基準値に															
9					即日又付衣匣	刪何里 ☆3	Ι	123	206		対する発生値の割合が最大とな る対象が異なる															
10						一次応力	125	118	272		3ループ(A、B、C)ともに															
11					PHTS-003 ※4	一次応力	118	106	272		同一仕様、配置 断層モデル波の発生値は応答ス ペクトル波の発生値に対応する評															
12							一次応力	94	87	272	スペクトル モーダル解析法	価点に合わせた														
13	配	1				配管支持装置	耐荷重 ※5	149	-	153		応答スペクトル波と断層モデル波 で配管支持装置の評価基準値に														
14	管	次 冷 却 玄			北自义讨农世	前间重 次3	_	68	76		対する発生値の割合が最大とな る対象が異なる															
15		자		А	PSOF-001	一次応力	210	170	243	スペクトル モーダル解析法																
16			1次ナトリウム オーバフロー系配管 -	1次ナトリウム オーバフロー系配管	А	PSOF-002	一次応力	111	94	243	応答倍率法に よる評価1															
17					1次ナトリウム オーバフロー系配管	1次ナトリウム オーパフロー系配管	1次ナトリウム オーパフロー系配管	1次ナトリウム オーバフロー系配管	1次ナトリウム オーバフロー系配管	1次ナトリウム オーパフロー系配管	1次ナトリウム オーパフロー系配管	1次ナトリウム オーバフロー系配管	А	PSOF-003	一次応力	114	99	243	応答倍率法に よる評価1							
18													1次ナトリウム オーバフロー系配管	1次ナトリウム オーバフロー系配管		_	-	А	PSOF-004	一次応力	67	56	243	応答倍率法に よる評価1		
19																	А	PSOF-005	一次応力	161	136	243	応答倍率法に よる評価1			
20																		А	PSOF-006	一次応力	136	136	243	応答倍率法に よる評価1		
21															As	PSOF-007	一次応力	213	176	245	時刻歴応答 解析法 スペクトル モーダル解析法	減衰定数4%を使用 添付資料8.2参照				
22																А	PSOF-008	一次応力	155	149	243	応答倍率法に よる評価1				
23																_		A	А	PSOF-009	一次応力	109	91	243	応答倍率法に よる評価1	
24																			А	PSOF-010	一次応力	194	164	243	応答倍率法に よる評価1	
25										А	PSOF-011	一次応力	205	206	243	スペクトル モーダル解析法 応答倍率法に	断層モデル波の評価は応答スペ クトル波の解析結果に基づく応答 倍率法による評価 断層モデル波の発生値は最大と									
26				A	PSOF-012	一次応力	105	89	255	ょる評価2' 応答倍率法に よる評価1	なるSs-5の値															

第2表(2/12) 配管の構造強度評価結果

		_		型師	評価部位		応答スペクトル波	断層モデル波 ※2	評価其準値															
No.			評価対象設備	クラス	(配管No.)	応力分類	発生値 ※1 (MPa)	発生値 ※1 (MPa)	(MPa)	評価方法 ※3	備考													
27				Α	PSPF-001	一次応力	85	68	243	応答倍率法に よる評価1														
28				А	PSPF-002	一次応力	86	73	255	応答倍率法に よる評価1														
29			1次ナトリウム	As	PSPF-005	一次応力	100	49	315	応答倍率法に よる評価1														
30			純化系配管	As	PSPF-006	一次応力	243	141	315	応答倍率法に よる評価1														
31				As	PSPF-007	一次応力	101	77	315	応答倍率法に よる評価1														
32				As	PSPF-008	一次応力	110	75	315	応答倍率法に よる評価1														
33				As	PSCD-001	一次応力	216	228	285	応答倍率法に よる評価2 応答倍率法に よる評価1														
34				As	PSCD-002	一次応力	189	199	313	応答倍率法に よる評価2 応答倍率法に よる評価1														
35				As	PSCD-003	一次応力	221	161	313	応答倍率法に よる評価1														
36			1次ナトリウム	As	PSCD-004	一次応力	254	185	313	応答倍率法に よる評価1														
37			充填ドレン系配管	As	PSCD-005	一次応力	204	128	313	スペクトル モーダル解析法 応答倍率法に よる評価2'	断層モデル波の評価は応答スペ クトル波の解析結果に基づく応答 倍率法による評価													
38				As	PSCD-006	一次応力	249	243	313	応答倍率法に よる評価2 応答倍率法に よる評価1														
39	配	1次				As	PSCD-007	一次応力	198	144	313	応答倍率法に よる評価1												
40	管	戸 却系		As	PSCD-008	一次応力	200	148	313	応答倍率法に よる評価1														
41				А	PARG-R-001	一次応力	130	94	311	応答倍率法に よる評価1														
42				А	PARG-R-002	一次応力	110	96	311	応答倍率法に よる評価1														
43				А	PARG-R-003	一次応力	143	93	311	応答倍率法に よる評価1														
44				А	PARG-R-004	一次応力	143	93	311	応答倍率法に よる評価1														
45			1次アルゴンガス系 配管	, 1次アルゴンガス系 配管	- 	 1次アルゴンガス系 配管	 4 1次アルゴンガス系 配管					- , - , 1次アルゴンガス系	 1次アルゴンガス系	 	4		As, A	PARG-R-005	一次応力	186	118	380	応答倍率法に よる評価1	
46															As、A	PARG-R-006	一次応力	86	46	380	応答倍率法に よる評価1			
47								As	PARG-R-007	一次応力	110	53	380	応答倍率法に よる評価1										
48				А	PARG-R-012	一次応力	182	96	432	応答倍率法に よる評価1														
49				А	PARG-R-017	一次応力	182	96	432	応答倍率法に よる評価1														
50				А	PARG-R-021	一次応力	287	151	432	応答倍率法に よる評価1														
51				А	PARG-R-022	一次応力	57	42	351	応答倍率法に よる評価1														
52				А	PARG-R-023	一次応力	59	45	351	応答倍率法に よる評価1														

第2表(3/12) 配管の構造強度評価結果

Na		-	1.在社会乱进	耐震	評価部位	中土八将	応答スペクトル波	断層モデル波 ※2	評価基準値		/# = <u>*</u>		
INO.		đ	評価対象設備	クラス	(配管№.)	心力分類	発生値 ※1 (MPa)	発生值 ※1 (MPa)	(MPa)	評価方法 ※3	佣考		
53				А	PARG-R-024	一次応力	57	42	351	応答倍率法に よる評価1			
54				А	PARG-R-025	一次応力	90	66	351	応答倍率法に よる評価1			
55				A	PARG-R-026	一次応力	126	85	351	応答倍率法に よる評価1			
56				А	PARG-R-027	一次応力	162	120	351	応答倍率法に よる評価1			
57				А	PARG-R-028	一次応力	164	120	351	応答倍率法に よる評価1			
58				А	PARG-R-029	一次応力	119	80	351	応答倍率法に よる評価1			
59				А	PARG-R-030	一次応力	289	201	432	応答倍率法に よる評価2 応答倍率法に よる評価1			
60				А	PARG-R-031	一次応力	244	131	351	応答倍率法に よる評価1			
61				А	PARG-R-032	一次応力	75	61	351	応答倍率法に よる評価1			
62				А	PARG-R-033	一次応力	222	178	351	応答倍率法に よる評価1			
63	*7	1		А	PARG-R-077	一次応力	170	92	380	応答倍率法に よる評価1			
64	配管	次冷却で	1次アルゴンガス系 配管	А	PARG-R-078	一次応力	82	43	380	応答倍率法に よる評価1			
65	Ц	糸	HU E		-	As	PARG-A-001	一次応力	181	87	380	応答倍率法に よる評価1	
66						-	А	PARG-A-003	一次応力	61	60	397	応答倍率法に よる評価1
67				А	PARG-A-004	一次応力	124	72	397	応答倍率法に よる評価1			
68				А	PARG-A-005	一次応力	275	198	397	応答倍率法に よる評価1			
69				А	PARG-A-008	一次応力	144	71	432	応答倍率法に よる評価1			
70				А	PARG-A-009	一次応力	195	94	432	応答倍率法に よる評価1			
71				As	PARG-A-024	一次応力	178	139	380	応答倍率法に よる評価1			
72				As	PARG-A-025	一次応力	147	82	380	応答倍率法に よる評価1			
73				А	PARG-A-028	一次応力	106	81	453	応答倍率法に よる評価1			
74				А	PARG-A-029	一次応力	39	39	453	応答倍率法に よる評価1			
75				А	PARG-A-030	一次応力	124	66	453	応答倍率法に よる評価1			

N	. 評価対象設備		亦在남중司进	耐震	評価部位	中土八桥	応答スペクトル波	断層モデル波 ※2	評価基準値		<u>#</u> +	
N		B.	Ŧ恤刈家設備	クラス	(配管No.)	心力分類	発生値 ※1 (MPa)	発生値 ※1 (MPa)	(MPa)	評価方法 ※3	1/用 <i>-</i> ち	
76	5			А	PARG-A-031	一次応力	305	153	453	応答倍率法に よる評価1		
7	,			А	PARG-A-032	一次応力	117	62	453	応答倍率法に よる評価1		
78	3		1次アルゴンガス系 配管	А	PARG-A-033	一次応力	122	66	453	応答倍率法に よる評価1		
79)				А	PARG-A-034	一次応力	146	133	453	応答倍率法に よる評価1	
80	配	1 次 冷 1		А	PARG-A-035	一次応力	187	96	453	応答倍率法に よる評価1		
8	管	却系		As	PMCL-001	一次応力	210	146	339	応答倍率法に よる評価1		
82	2			А	PMCL-002	一次応力	88	68	352	応答倍率法に よる評価1		
8	3		1次メンテナンス 冷却系配管	А	PMCL-003	一次応力	70	67	352	応答倍率法に よる評価1		
84	L			As PMCL-004 一次応	一次応力	248	252	285	スペクトル モーダル解析法	断層モデル波の評価は応答スペ クトル波の解析結果に基づく応答 倍率法による評価		
			As PMCL-004 一次応力 248						210	248 252	200	応答倍率法に よる評価2'

第2表(4/12) 配管の構造強度評価結果

第2表(5/12) 配管の構造強度評価結果

				副師	評価部位		応答スペクトル波	断層モデル波 ※2	評価基進値		
No.	評価対象設備		クラス	(配管No.)	応力分類	発生値 ※1 (MPa)	発生値 ※1 (MPa)	(MPa)	評価万法 ※3	備考	
85						一次応力	200	200	243		断層モデル波の発生値は最大と なるSs−5の値
86				As	SHTS-A01 ※4	一次応力	179	180	243	スペクトル モーダル解析法	
87						一次応力	166	166	243		
88						一次応力	197	220	243	3次元シェル評価 スペクトル モーダル解析法	SHTS-C02と同一仕様、配置 断層モデル波の発生値は最大と
89				As	SHTS-A02 ※4	一次応力	195	179	243	スペクトル モーダル解析法	12-202 007 00
90						一次応力	190	175	245	スペクトル モーダル解析法	
91						一次应力	248	_	252	時刻歴応答 解析法	SHTS-B02、SHTS-C03と同一仕 様、配置であるためSHTS-A03を 代表とする
92						入心力	-	288	330	3次元シェル評価	断層モデル波の発生値は最大と なるSs−5の値
93				в	SHTS-A03 ※4	一次应力	234	_	252	時刻歴応答 解析法	3次元シェル評価による断層モデ ル波の評価は容器の評価を実施
94						— 次 16月	-	288	330	3次元シェル評価	
95						一次応力	208	182	252	時刻歴応答 解析法	
96						一次応力	217	189	260	3次元シェル評価 スペクトル モーダル解析法	SHTS-C04と同一仕様、配置であ るためSHTS-A04を代表とする
97	配	2 次	0次十次扣买十副签	As	SHTS-A04 ※4	一次応力	230	156	260	スペクトル モーダル解析法	取工技の値は計画力法をより詳細化した値 断層モデル波の発生値は最大と
98	管	^斤 却 系	2次主币却杀主配官			一次応力	113	107	260	スペクトル モーダル解析法	なるSs−5の値
99						一次応力	151	151	260	スペクトル モーダル解析法 応答倍率法に よる評価2'	断層モデル波の評価は応答スペ クトル波の解析結果に基づく応答 倍率法による評価
100				As	SHTS-A05 ※4	一次応力	103	103	260	スペクトル モーダル解析法 応答倍率法に よる評価2'	断層モデル波の発生値は最大と なるSs−5の値
101						一次応力	88	91	260	スペクトル モーダル解析法 応答倍率法に よる評価2'	
102						一次応力	226	206	243	スペクトル モーダル解析法	断層モデル波の発生値は最大と なるSs−5の値
103				As	SHTS-B01 ※4	一次応力	192	178	245	スペクトル モーダル解析法	
104						一次応力	192	178	245	スペクトル モーダル解析法	
105						一次応力	213	199	260	3次元シェル評価 スペクトル モーダル解析法	最上段の値は評価方法をより詳細化した値
106				As	SHTS-B03 ※4	一次応力	239	154	260	スペクトル モーダル解析法	^{1២1度モテル波の先生値は最大と なるSs−5の値}
107	1					一次応力	128	111	260	スペクトル モーダル解析法	
108	1					一次応力	203	207	243	スペクトル モーダル解析法 応答倍率法に よる評価?	断層モデル波の評価は応答スペ クトル波の解析結果に基づく応答 倍率法による評価
109	1			As	SHTS-C01 ※4	一次応力	168	182	243	スペクトル モーダル解析法 応答倍率法に よる評価?	断層モデル波の発生値は最大と なるSs−5の値
110	1					一次応力	156	168	243	スペクトル モーダル解析法 応答倍率法に よる評価2'	

第2表(6/12) 配管の構造強度評価結果

). 評価対象設備		耐震	評価部位		応答スペクトル波	断層モデル波 ※2	評価基準値				
No.		評価対象設備		クラス	(配管No.)	応力分類	発生値 ※1 (MPa)	発生値 ※1 (MPa)	(MPa)	評価方法 ※3	備考	
111						一次応力	211	184	260	応答倍率法に よる評価2		
	-									応答倍率法に よる評価1	-	
112			2次主冷却系主配管	As	SHTS-C05 ※4	一次応力	208	141	260	応答倍率法に よる評価1		
113						一次応力	164	167	260	応答倍率法に よる評価2' 応答倍率法に よる評価1		
114			2次ナトリウム純化系 配管	As	SSPF-002	一次応力	171	124	351	応答倍率法に よる評価1		
115				As	SSDR-A01	一次応力	178	199	243	スペクトル モーダル解析法 応答倍率法に よる評価2'	SSDR-C01と同一仕様、配置であるた めSSDR-A01を代表とする 断層モデル波の発生値は最大となる Ss-1の値	
116				As	SSDR-A03	一次応力	181	122	334	応答倍率法に よる評価1		
117				As	SSDR-A06	一次応力	202	163	278	応答倍率法に よる評価1	SSDR-C06と同一仕様、配置であ るためSSDR-A06を代表とする	
118			2次ナトリウム 充填ドレン系配管	As	SSDR-B01	一次応力	178	200	243	スペクトル モーダル解析法 応答倍率法に よる評価2'	断層モデル波の発生値は最大と なるSs−9の値	
119				As	SSDR-B03	一次応力	160	108	334	応答倍率法に よる評価1		
120				As	SSDR-B06	一次応力	238	191	278	スペクトル モーダル解析法 応答倍率法に よる評価2'	断層モデル波の発生値は最大と なるSs-9の値	
121				As	SSDR-C03	一次応力	252	170	357	応答倍率法に よる評価1		
122	配	2 次		As	SHTS-A02	一次応力	178	147	245	応答倍率法に よる評価1		
123	管	冷却で			Δs	SHTS-A04	一次応力	228	224	275	応答倍率法に よる評価2'	
	_	糸		,					2.0	応答倍率法に よる評価1		
124				As	SHTS-A06	一次応力	251	232	371	応答倍率法に よる評価1		
125			補助冷却設備主配管	As	SHTS-A07	一次応力	231	228	383	応答倍率法に よる評価1		
126				As	SHTS-B01	一次応力	157	162	245	応答倍率法に よる評価2' 応答倍率法に よる評価1	-	
127				As	SHTS-B03	一次応力	214	243	275	3次元シェル評価	断層モデル波の発生値は最大と なるSe-5の値	
	-									モーダル解析法		
128				As	SMCL-001	一次応力	125	91	352	応答倍率法に よる評価1		
129				А	SMCL-002	一次応力	244	172	352	応答倍率法に よる評価1		
130				А	SMCL-003	一次応力	160	120	352	応答倍率法に よる評価1		
131			2次メンテナンス 冷却系配管	A	SMCL-004	一次応力	146	112	352	応答倍率法に よる評価1		
132				As	SMCL-005	一次応力	100	64	352	応答倍率法に よる評価1		
133				As	SMCL-006	一次応力	187	145	352	応答倍率法に よる評価1		
134				А	SMCL-007	一次応力	153	94	383	応答倍率法に よる評価1		

第2表(7/12) 配管の構造強度評価結果

		-	- (m) (7 - 7)	動震	評価部位		応答スペクトル波	断層モデル波 ※2	評価基準値		
No.		評価対象設備		クラス	(配管No.)	応力分類	発生値 ※1 (MPa)	発生値 ※1 (MPa)	(MPa)	評価方法 ※3	備考
135				As	MCLS-A01	一次応力	234	209	367	応答倍率法に よる評価2' 応答倍率法に よる評価1	-
136				As	MCLS-A02	一次応力	191	157	367	応答倍率法に よる評価1	
137				As	MCLS-A03	一次応力	247	145	363	応答倍率法に よる評価1	
138				As	MCLS-A04	一次応力	302	201	367	応答倍率法に よる評価1	
139				As	MCLS-A05	一次応力	282	188	367	応答倍率法に よる評価1	
140				As	MCLS-A06	一次応力	256	150	363	応答倍率法に よる評価1	
141				As	MCLS-A07	一次応力	199	122	363	応答倍率法に よる評価1	
142				As	MCLS-A08	一次応力	207	242	367	応答倍率法に よる評価2 応答倍率法に よる評価1	-
143				As	MCLS-A09	一次応力	237	179	367	応答倍率法に よる評価2' 応答倍率法に よる評価1	-
144				As	MCLS-A10	一次応力	241	179	367	応答倍率法に よる評価2' 応答倍率法に よる評価1	-
145				As	MCLS-A11	一次応力	234	251	367	応答倍率法に よる評価2' 応答倍率法に よる評価1	-
146				As	MCLS-A12	一次応力	290	153	367	応答倍率法に よる評価1	
147	配	機器	機架体却玄配管	As	MCLS-A13	一次応力	261	166	367	応答倍率法に よる評価1	
148	管	^小 却系		А	MCLS-A14	一次応力	301	214	363	応答倍率法に よる評価2' 応答倍率法に よる評価1	
149				А	MCLS-A15	一次応力	107	65	363	応答倍率法に よる評価1	
150				А	MCLS-A16	一次応力	154	94	363	応答倍率法に よる評価1	
151				А	MCLS-A17	一次応力	111	67	363	応答倍率法に よる評価1	
152				А	MCLS-A18	一次応力	22	20	363	応答倍率法に よる評価1	
153				А	MCLS-A19	一次応力	26	25	363	応答倍率法に よる評価1	
154				А	MCLS-A20	一次応力	67	41	363	応答倍率法に よる評価1	
155				As	MCLS-B01	一次応力	249	222	367	応答倍率法に よる評価2' 応答倍率法に よる評価1	-
156				As	MCLS-B02	一次応力	136	82	367	応答倍率法に よる評価1	
157				As	MCLS-B03	一次応力	156	92	363	応答倍率法に よる評価1	
158				As	MCLS-B04	一次応力	252	131	367	応答倍率法に よる評価1	
159				As	MCLS-B05	一次応力	272	168	367	スペクトル モーダル解析法 応答倍率法に よる評価2'	断層モデル波の評価は応答スペ クトル波の解析結果に基づく応答 倍率法による評価
160				As	MCLS-B06	一次応力	182	106	363	応答倍率法に よる評価1	

第2表(8/12) 配管の構造強度評価結果

м.			5./ 17.1.1.43. =0./++	耐震	評価部位	亡士八年	応答スペクトル波	断層モデル波 ※2	評価基準値		/# +z			
NO.		Đ	" 恤对家設倆	クラス	(配管No.)	心刀分類	発生値 ※1 (MPa)	発生值 ※1 (MPa)	(MPa)	評価 万法 ※3	備考			
161				As	MCLS-B07	一次応力	245	191	363	応答倍率法に よる評価1				
162				As	MCLS-B08	一次応力	229	117	367	応答倍率法に よる評価1				
163				As	MCLS-B09	一次応力	152	160	367	スペクトル モーダル解析法	断層モデル波の評価は応答スペ クトル波の解析結果に基づく応答 倍率法による評価			
										応答倍率法に よる評価2'	断層モデル波の発生値は最大と なるSs-5の値			
164				As	MCLS-B10	一次応力	61	45	367	応答倍率法に よる評価1				
165				As	MCLS-B11	一次応力	296	153	367	応答倍率法に よる評価1				
166		機器冷却	機器冷却系配管	As	MCLS-B12	一次応力	273	176	367	応答倍率法に よる評価2 応答倍率法に よる評価1				
167		却 系		As	MCLS-B13	一次応力	236	124	367	応答倍率法に よる評価1				
168				А	MCLS-B14	一次応力	160	97	363	応答倍率法に よる評価1				
169				А	MCLS-B15	一次応力	140	85	363	応答倍率法に よる評価1				
170				А	MCLS-B16	一次応力	125	82	363	応答倍率法に よる評価1				
171	配				А	MCLS-B17	一次応力	17	16	363	応答倍率法に よる評価1			
172	管			А	MCLS-B18	一次応力	82	50	363	応答倍率法に よる評価1				
173				As、A	RAWS-A01	一次応力	197	181	367	応答倍率法に よる評価1				
174				А	RAWS-A02	一次応力	281	214	367	応答倍率法に よる評価1				
175				А	RAWS-A03	一次応力	26	26	367	応答倍率法に よる評価1				
176				А	RAWS-A04	一次応力	68	67	367	応答倍率法に よる評価1				
177		補機会	原子炬補機冷却水系	原子炉補機冷却水系	原子炉補機冷却水系	原子炉補機冷却水系	А	RAWS-A05	一次応力	188	188	367	スペクトル モーダル解析法 応答倍率法に よる評価2'	断層モデル波の評価は応答スペ クトル波の解析結果に基づく応答 倍率法による評価
178		^斤 却系	配管	As、A	RAWS-A06	一次応力	203	135	367	応答倍率法に よる評価1				
179				А	RAWS-B01	一次応力	75	51	367	応答倍率法に よる評価1				
180				А	RAWS-B02	一次応力	212	102	367	応答倍率法に よる評価1				
181				А	RAWS-B03	一次応力	164	86	367	応答倍率法に よる評価1				
182				А	RAWS-B04	一次応力	163	129	367	応答倍率法に よる評価1				

第2表(9/12) 配管の構造強度評価結果

	. 評価対象設備		雪酒	評価部位		応答スペクトル波	断層モデル波 ※2	評価基準値			
No.		評価対象設備		クラス	(配管No.)	応力分類	発生値 ※1 (MPa)	発生値 ※1 (MPa)	(MPa)	評価方法 ※3	備考
183				А	RAWS-B05	一次応力	255	204	367	応答倍率法に よる評価1	
184				А	RAWS-B06	一次応力	88	53	367	応答倍率法に よる評価1	
185			原子炉補機冷却水系 配管	As	RAWS-C01	一次応力	106	97	345	応答倍率法に よる評価1	
186				As	RAWS-C02	一次応力	184	142	345	応答倍率法に よる評価1	
187				As	RAWS-C03	一次応力	150	116	345	応答倍率法に よる評価1	
188				As	RASW-A01	一次応力	168	265	356	応答倍率法に よる評価1	
189				As	RASW-A02	一次応力	203	166	356	スペクトル モーダル解析法 応答倍率法に よる評価2'	断層モデル波の評価は応答スペ クトル波の解析結果に基づく応答 倍率法による評価
190				As	RASW-A03	一次応力	287	217	356	応答倍率法に よる評価2 応答倍率法に よる評価1	-
191				As	RASW-A04	一次応力	131	120	369	応答倍率法に よる評価1	
192				As	RASW-A05	一次応力	122	111	356	応答倍率法に よる評価1	
193]	補		As	RASW-A06	一次応力	226	174	356	応答倍率法に よる評価1	
194	配管	□機冷却		As	RASW-B01	一次応力	213	166	356	スペクトル モーダル解析法	
195		糸		As	RASW-B02	一次応力	283	199	356	応答倍率法に よる評価2 応答倍率法に よる評価1	-
196			原子炉補機冷却	As	RASW-B03	一次応力	223	181	356	応答倍率法に よる評価1	
197			海水系配管	As	RASW-B04	一次応力	151	138	369	応答倍率法に よる評価1	
198				As	RASW-B05	一次応力	57	52	356	応答倍率法に よる評価1	
199				As	RASW-B06	一次応力	138	125	356	応答倍率法に よる評価1	
200				As	RASW-C01	一次応力	168	236	356	応答倍率法に よる評価1 応答倍率法に よる評価2	
201				As	RASW-C02	一次応力	204	199	356	スペクトル モーダル解析法 応答倍率法に よる評価2'	断層モデル波の評価は応答スペ クトル波の解析結果に基づく応答 倍率法による評価
202				As	RASW-C03	一次応力	243	187	356	応答倍率法に よる評価1	
203				As	RASW-C04	一次応力	241	216	356	応答倍率法に よる評価1	
204				As	RASW-C05	一次応力	124	114	356	応答倍率法に よる評価1	
205				As	RASW-C06	一次応力	160	125	356	応答倍率法に よる評価1	

第2表(10/12) 配管の構造強度評価結果

		=	T. / TT + 1 47 = 1. / ++	耐震	評価部位	亡士八年	応答スペクトル波	断層モデル波 ※2	評価基準値		/# +z												
INO.		Ē	¥恤对家設傭	クラス	(配管No.)	心刀分類	発生値 ※1 (MPa)	発生值 ※1 (MPa)	(MPa)	評価力法 ※3	偏考												
206					EXCL-014	一次応力	28	23	323	応答倍率法に よる評価1													
207		燃料出入	燃料出入機冷却装置	•	EXCL-015	一次応力	46	38	323	応答倍率法に よる評価1													
208		機冷却玄	ダクト	4	EXCL-016	一次応力	43	36	323	応答倍率法に よる評価1													
209		সং			EXCL-017	一次応力	80	42	323	応答倍率法に よる評価1													
210					EVSC-A01	一次応力	115	90	352	応答倍率法に よる評価1													
211					EVSC-A02	一次応力	71	71	352	応答倍率法に よる評価1													
212					EVSC-A03	一次応力	80	80	336	応答倍率法に よる評価1													
213					EVSC-A04	一次応力	112	88	352	応答倍率法に よる評価1													
214					EVSC-B01	一次応力	240	190	352	応答倍率法に よる評価1													
215					EVSC-B02	一次応力	65	66	352	応答倍率法に よる評価1													
216					EVSC-B03	一次応力	83	79	352	応答倍率法に よる評価1													
217					EVSC-B04	一次応力	256	203	352	応答倍率法に よる評価1													
218	配管	-			EVSC-C01	一次応力	233	183	352	応答倍率法に よる評価1													
219		炉外燃料			EVSC-C02	一次応力	67	67	352	応答倍率法に よる評価1													
220		₣ 貯 蔵 設	炉外燃料貯蔵槽 冷却系配管	As	EVSC-C03	一次応力	103	103	352	応答倍率法に よる評価1													
221		備冷却系			EVSC-C04	一次応力	135	106	352	応答倍率法に よる評価1													
222					EVSC-005	一次応力	64	55	335	応答倍率法に よる評価1													
223					EVSC-006	一次応力	101	81	352	応答倍率法に よる評価1													
224																	EVSC-007	一次応力	105	85	352	応答倍率法に よる評価1	
225					EVSC-A08	一次応力	84	85	352	応答倍率法に よる評価1													
226									EVSC-A09	一次応力	106	83	352	応答倍率法に よる評価1									
227														·	·	·	EVSC-B08	一次応力	16	14	352	応答倍率法に よる評価1	
228					EVSC-B09	一次応力	202	160	352	応答倍率法に よる評価1													
229					EVSC-C08	一次応力	22	19	352	応答倍率法に よる評価1													
230					EVSC-C09	一次応力	49	39	352	応答倍率法に よる評価1													

第2表(11/12) 配管の構造強度評価結果

		=-	(A = /#	耐震	評価部位	亡士八年	応答スペクトル波	断層モデル波 ※2	評価基準値		/# -*/
INO.		B'	[•] 恤对家設傭	クラス	(配管No.)	心刀分類	発生値 ※1 (MPa)	発生值 ※1 (MPa)	(MPa)	評価力法 ※3	· 備 考
231		炉外	炉外燃料貯蔵槽	A a	EVAP-001	一次応力	201	156	352	応答倍率法に よる評価1	
232		冷却系燃料貯蔵	配管	49	EVAP-002	一次応力	187	145	352	応答倍率法に よる評価1	
233		設備	炉外燃料貯蔵槽 1次アルゴンガス系 配管	As	EVGP-001	一次応力	241	178	352	応答倍率法に よる評価1	
234					IA-A01	一次応力	27	23	315	応答倍率法に よる評価1	
235					IA-A02	一次応力	90	57	325	応答倍率法に よる評価1	
236					IA-A03	一次応力	55	37	325	応答倍率法に よる評価1	
237					IA-A04	一次応力	32	24	325	応答倍率法に よる評価1	
238					IA-A05	一次応力	100	62	325	応答倍率法に よる評価1	
239					IA-A06	一次応力	59	40	325	応答倍率法に よる評価1	
240					IA-A07	一次応力	12	9	325	応答倍率法に よる評価1	
241					IA-A08	一次応力	47	37	325	応答倍率法に よる評価1	
242					IA-A09	一次応力	74	41	325	応答倍率法に よる評価1	
243	配				IA-A10	一次応力	73	64	325	応答倍率法に よる評価1	
244	管	制御田			IA-A11	一次応力	46	24	325	応答倍率法に よる評価1	
245		二日 縮空	制御用圧縮空気設備 配管	А	IA-A12	一次応力	27	24	325	応答倍率法に よる評価1	
246		気設備			IA-A13	一次応力	148	76	325	応答倍率法に よる評価1	
247					IA-A14	一次応力	88	73	325	応答倍率法に よる評価1	
248					IA-A15	一次応力	128	76	325	応答倍率法に よる評価1	
249					IA-A16	一次応力	31	26	325	応答倍率法に よる評価1	
250					IA-A17	一次応力	34	24	325	応答倍率法に よる評価1	
251					IA-A18	一次応力	131	66	325	応答倍率法に よる評価1	
252					IA-A19	一次応力	136	80	325	応答倍率法に よる評価1	
253					IA-B01	一次応力	39	31	315	応答倍率法に よる評価1	
254					IA-B02	一次応力	36	30	325	応答倍率法に よる評価1	
255					IA-B03	一次応力	27	23	325	応答倍率法に よる評価1	
256					IA-B04	一次応力	29	25	325	応答倍率法に よる評価1	

第2表(12/12) 配管の構造強度評価結果

Ν.	No. 評伯	5./ 17.1.1.43. =0./++	耐震	評価部位	亡士八年	応答スペクトル波	断層モデル波 ※2	評価基準値		/# +	
INO.		B	⁺ 恤刈豕訤伽	クラス	(配管No.)	心力方領	発生値 ※1 (MPa)	発生值 ※1 (MPa)	(MPa)	評価方法 ※3	佣考
257					IA-B05	一次応力	32	24	325	応答倍率法に よる評価1	
258					IA-B06	一次応力	100	62	325	応答倍率法に よる評価1	
259					IA-B07	一次応力	59	40	325	応答倍率法に よる評価1	
260					IA-B08	一次応力	12	9	325	応答倍率法に よる評価1	
261		制			IA-B09	一次応力	73	64	325	応答倍率法に よる評価1	
262	配	御用圧綻	制御用圧縮空気設備	^	IA-B10	一次応力	45	34	325	応答倍率法に よる評価1	
263	管	= 空気設	配管	4	IA-B11	一次応力	87	54	325	応答倍率法に よる評価1	
264		備			IA-B12	一次応力	24	20	325	応答倍率法に よる評価1	
265					IA-B13	一次応力	93	56	325	応答倍率法に よる評価1	
266					IA-B14	一次応力	127	82	325	応答倍率法に よる評価1	
267					IA-B15	一次応力	24	16	325	応答倍率法に よる評価1	
268					IA-B16	一次応力	110	75	325	応答倍率法に よる評価1	

※1 発生値は評価対象である配管において評価基準値に対する発生値の割合が最大となるものを記載。
 ※2 断層モデル波の評価結果は備考に注記がない場合は、Ss-1~Ss-9の包絡スペクトルによる評価。
 ※3 同一の評価部位で評価方法が応答スペクトル波と断層モデル波で異なる場合は、上欄に応答スペクトル波の評価方法を、下欄に断層モデル波の評価方法を示す。
 ※4 1次主冷却系主配管、2次主冷却系主配管は各配管Noにおいて評価基準値に対する発生値の割合が大きくなる評価点について上位3点を記載。
 ※5 配管支持装置は部材の強度に基づいた耐荷重を評価基準値として評価。

第3表(1/2) 動的機能維持評価

Ν.	0. 評価対象設備		機器名称 評価部分		H	応答スペクトル波	断層モデル波 ※2		/# +r
INO.		評恤刈豕訤伽	愤奋石仦	吉平1四 音》	12 :81	応答加速度、荷重 変位	応答加速度、荷重 変位	許個奉华旭	()佣考
1		1次冷却系設備	主循環ポンプ	静圧軸受	軸受荷重	174(kN)	125(kN)	554(kN)	
2		2次冷却系設備	主循環ポンプ	静圧軸受	軸受荷重	17(kN)	16(kN)	126(kN)	
3		補助冷却設備	空気冷却器	送風機	水平加速度	1.26(G)	1.32(G)	2.3(G)	断層モデル波の発生値は最大 となるSs-4の値
4					鉛直加速度	0.74(G)	0.52(G)	1.0(G)	断層モデル波の発生値は最大 となるSs-5の値
5			冷却ポンプ	軸受部	水平加速度	0.85(G)	0.73(G)	2.4(G)	断層モデル波の発生値は最大 となるSs-7の値
6	臣				鉛直加速度	0.52(G)	0.41 (G)	1.0(G)	断層モデル波の発生値は最大 となるSs-5の値
7	子炉冷却	機器冷却系設備	ポニーモータ冷却ファン	軸系	水平加速度	1.57(G)	1.71 (G)	2.6 (G)	断層モデル波の発生値は最大 となるSs-5の値
8	系統施設				鉛直加速度	0.83(G)	0.48(G)	1.0(G)	断層モデル波の発生値は最大 となるSs-7の値
9	DX.		冷凍機	圧縮機 軸系	水平加速度	0.85(G)	0.73(G)	2.3(G)	断層モデル波の発生値は最大 となるSs-7の値
10					鉛直加速度	0.52(G)	0.41 (G)	1.0(G)	断層モデル波の発生値は最大 となるSs-5の値
11		原子炉補機冷却水系設備	冷却水ポンプ	軸位置	水平加速度	0.85(G)	0.73(G)	1.4(G)	断層モデル波の発生値は最大 となるSs-7の値
12					鉛直加速度	0.52(G)	0.41 (G)	1.0(G)	断層モデル波の発生値は最大 となるSs-5の値
13		原子炉補機冷却海水系 設備	海水ポンプ	コラム先端部	水平加速度	3.16(G)	3.72(G)	10.0(G)	断層モデル波の発生値は最大 となるSs-7の値
14					鉛直加速度	0.75(G)	0.56(G)	1.0(G)	断層モデル波の発生値は最大 となるSs-5の値
15	計測	制御棒	制御棒駆動機構 (挿入性)	制御棒案内管と 制御棒上部案内管	相対変位	36 (mm)	27 (mm)	55(mm)	断層モデル波の発生値は最大 となるSs-5の値
16	制御系統	制御用圧縮空気設備	制御用空気圧縮機	本体シリンダ 頂部	水平加速度	0.85(G)	0.73(G)	2.2(G)	断層モデル波の発生値は最大 となるSs-7の値
17	施 設				鉛直加速度	0.52(G)	0.41 (G)	1.0(G)	断層モデル波の発生値は最大 となるSs-5の値
18	原子炉格	換気空調設備	アニュラス循環排気ファン	軸受部	水平加速度	1.48(G)	1.52(G)	2.3(G)	断層モデル波の発生値は最大 となるSs-4の値
19	中納施設				鉛直加速度	0.83(G)	0.54(G)	1.0(G)	断層モデル波の発生値は最大 となるSs-5の値
20	その	換気空調設備	中央制御室空調ファン	軸受部	水平加速度	1.48(G)	1.52(G)	2.3(G)	断層モデル波の発生値は最大 となるSs-4の値
21	他原子恒				鉛直加速度	0.83(G)	0.54(G)	1.0(G)	断層モデル波の発生値は最大 となるSs-5の値
22	~の附属 ☆		中央制御室浄化ファン	軸受部	水平加速度	1.48(G)	1.52(G)	2.3(G)	断層モデル波の発生値は最大 となるSs-4の値
23	心設				鉛直加速度	0.83(G)	0.54(G)	1.0(G)	断層モデル波の発生値は最大 となるSs-5の値

第3表(2/2)動的機能維持評価

No		亚在台名凯进	推興々み	=亚/平 女/	佐 义1	応答スペクトル波	断層モデル波 ※2	款还甘淮店	/# *
INU.		計Ⅲ刈豕苡佣	成硚石州	6 十1 四百)	NY 201	応答加速度、荷重 変位	応答加速度、荷重 変位	計画委告値	1)用 45
24	その	ディーゼル発電機設備	ディーゼル発電機	ディーゼル機関 本体	水平加速度	0.87(G)	0.78(G)	1.1(G)	断層モデル波の発生値は最大 となるSs−5の値
25	0他原子恒				鉛直加速度	0.60(G)	0.38(G)	1.0(G)	断層モデル波の発生値は最大 となるSs−5の値
26	~の附属 施			ガバナ	水平加速度	0.87(G)	0.78(G)	1.8(G)	断層モデル波の発生値は最大 となるSs−5の値
27	設				鉛直加速度	0.60(G)	0.38(G)	1.0(G)	断層モデル波の発生値は最大 となるSs−5の値
28		蒸気発生器	入口止め弁	弁駆動部 (A,Cループ)	合成加速度	4.85(G)	4.26(G)	5.0(G)	評価基準値は添付資料8.4 参照 断層モデル波の発生値は最大 となるSs-4の値
29	4			弁駆動部 (Bループ)	合成加速度	4.35(G)	3.81 (G)	5.0(G)	評価基準値は添付資料8.4 参照 断層モデル波の発生値は最大 となるSs-5の値
30	л	空気冷却器	出口止め弁	弁駆動部 (A,Cループ)	合成加速度	4.67(G)	4.88(G)	5.0(G)	評価基準値は添付資料8.4 参照 断層モデル波の発生値は最大 となるSs-4の値
31				弁駆動部 (Bループ)	合成加速度	4.19(G)	4.83(G)	5.0(G)	評価基準値は添付資料8.4 参照 断層モデル波の発生値は最大 となるSs-5の値

※1 加速度を記載のものは応答加速度と評価基準値を比較。評価基準値は機能確認済加速度の値。 ※2 断層モデル波の評価結果は備考に注記がない場合は、Ss-1~Ss-9の包絡スペクトルによる評価。